Advanced Systems Lab

Spring 2025

Lecture: Fast FFT implementation, FFTW

Instructor: Markus Püschel

TA: Tommaso Pegolotti, several more

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1

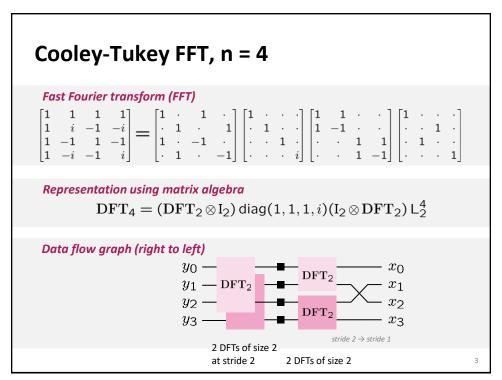
Fast FFT: Example FFTW Library

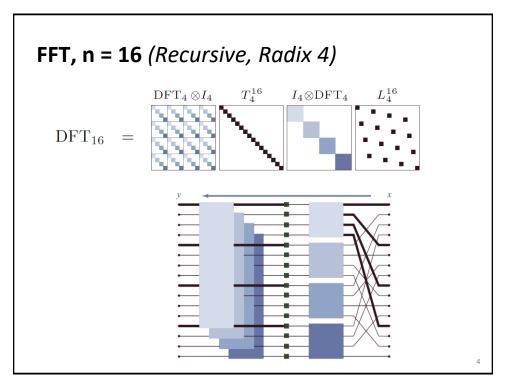
www.fftw.org

Frigo and Johnson, FFTW: An Adaptive Software Architecture for the FFT, ICASSP 1998

Frigo, A Fast Fourier Transform Compiler, PLDI 1999

Frigo and Johnson, The Design and Implementation of FFTW3, Proc. IEEE 93(2) 2005





Recursive Cooley-Tukey FFT

$$\mathbf{DFT}_{km} = L_m^{km}(\mathbf{I}_k \otimes \mathbf{DFT}_m)T_m^{km}(\mathbf{DFT}_k \otimes \mathbf{I}_m)$$
 decimation-in-frequency

For powers of two $n = 2^t$ sufficient together with base case

$$DFT_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

5

5

Fast Implementation (≈ FFTW 2.x)

Choice of algorithm

Locality optimization

Constants

Fast basic blocks

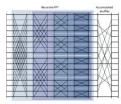
Adaptivity

1: Choice of Algorithm

Choose recursive, not iterative

$$DFT_{km} = (DFT_k \otimes I_m)T_m^{km}(I_k \otimes DFT_m)L_k^{km}$$

Radix 2, recursive



Radix 2, iterative

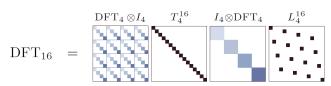


 $(\mathrm{DFT}_2 \otimes l_8) T_4^{16} \left(l_2 \otimes \left((\mathrm{DFT}_2 \otimes l_4) T_4^{8} \left(l_2 \otimes \left((\mathrm{DFT}_2 \otimes l_4) T_4^{8} \left(l_2 \otimes \left((\mathrm{DFT}_2 \otimes l_4) T_2^{8} \left(l_2 \otimes \mathrm{DFT}_2 \right) l_4^{19} \right) L_2^{16} \right) \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_2 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_3 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_3 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_3 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_2 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_3 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_2 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_3 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_2 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_3 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_2 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) \left((l_2 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{DFT}_2 \otimes l_4) D_6^{16} \right) L_2^{16} \\ = \left((l_1 \otimes \mathrm{D$

First recursive implementation we consider in this course

7

2: Locality Improvement

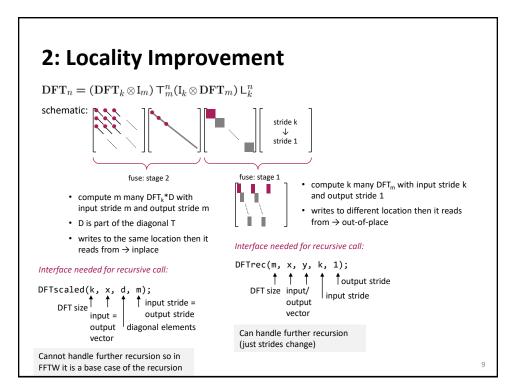


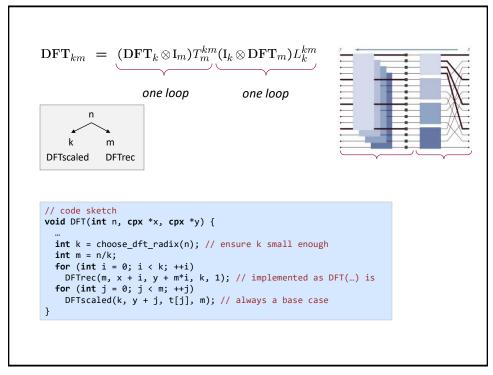
Straightforward implementation: 4 steps

- Permute
- Loop recursively calling smaller DFTs (here: 4 of size 4)
- Loop that scales by twiddle factors (diagonal elements of T)
- Loop recursively calling smaller DFTs (here: 4 of size 4)

4 passes through data: bad locality

Better: fuse some steps





3: Constants

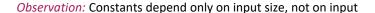
FFT incurs multiplications by roots of unity

In real arithmetic:

Multiplications by sines and cosines, e.g.,

```
y[i] = sin(i \cdot pi/128)*x[i];
```

Very expensive!



Solution: Precompute once and use many times

```
d = DFT_{init}(1024); // init function computes constant table d(x, y); // use many times
```

11

11

4: Optimized Basic Blocks

```
// code sketch
void DET(int n, cpx *x, cpx *y) {
    if (use_base_case(n))
        DFTbc(n, x, y); // use base case
    else {
        int k = choose_dft_radix(n); // ensure k <= 32
        int m = n/k;
        for (int i = 0; i < k; ++i)
            DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(...) is
        for (int j = 0; j < m; ++j)
            DFTscaled(k, y + j, t[j], m); // always a base case
    }
}</pre>
```

Just like loops can be unrolled, recursions can also be unrolled

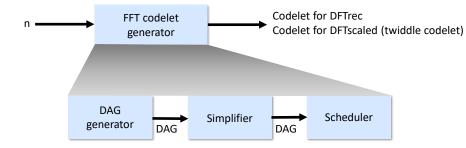
Empirical study: Base cases for sizes $n \le 32$ useful (scalar code)

Needs 62 base cases or "codelets" (why?)

- DFTrec, sizes 2–32
- DFTscaled, sizes 2–32

Solution: Codelet generator (codelet = optimized basic block)

FFTW Codelet Generator



All generated code is straightline code (no loops), SSA style

Can also generate specialized version for real inputs (= another 62 codelets) and some other variants

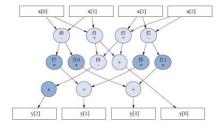
Codelet generator is written Monad style in Objective Caml

13

13

Small Example DAG

DAG:



One possible unparsing:

```
f0 = x[0] - x[3];

f1 = x[0] + x[3];

f2 = x[1] - x[2];

f3 = x[1] + x[2];

f4 = f1 - f3;

y[0] = f1 + f3;

y[2] = 0.7071067811865476 * f4;

f7 = 0.9238795325112867 * f0;

f8 = 0.3826834323650898 * f2;

y[1] = f7 + f8;

f10 = 0.3826834323650898 * f0;

f11 = (-0.9238795325112867) * f2;

y[3] = f10 + f11;
```

14

DAG Generator

Knows FFTs: Cooley-Tukey, split-radix, Good-Thomas, Rader, represented in sum notation

$$y_{n_2j_1+j_2} = \sum_{k_1=0}^{n_1-1} \left(\omega_n^{j_2k_1}\right) \left(\sum_{k_2=0}^{n_2-1} x_{n_1k_2+k_1} \omega_{n_2}^{j_2k_2}\right) \omega_{n_1}^{j_1k_1}$$

For given n, suitable FFTs are recursively applied to yield n (real) expression trees for outputs $y_0, ..., y_{n-1}$

Trees are fused to an (unoptimized) DAG

15

15

Simplifier

Applies standard optimizations also done by compiler:

- Algebraic transformations like simplifying mults by 0, 1, -1
- Common subexpression elimination (CSE)

Applies FFT-specific optimizations not typically done by a compiler

Simplifier: FFT-specific

Usually subractions in FFTs come in pairs (x-y), (y-x)

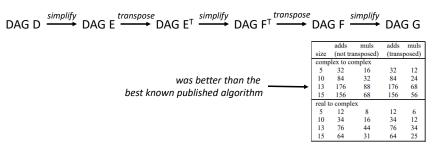
■ Canonicalize to (x-y), -(x-y), gives more common subexpressions

Constants also usually come in pairs c, -c

Make all positive, reduces register pressure

Find more common subexpressions for a linear transform algorithm

CSE also on transposed DAG = transposed transform



17

Simplifier: Real FFTs

output is conjugate complex = only first half is needed = Complex FFT DAG * input is real

Real FFT codelets can be obtained by pruning complex FFTs, i.e., dead code elimination plus all other techniques in simplifier

Scheduler

Determines in which sequence the DAG is unparsed to C (topological sort of the DAG)

Goal: minimize register spills

A 2-power FFT has an optimal operational intensity of $I(n) = \Theta(log(C))$, where C is the cache size [1]

Implies: For R registers $\Omega(n \log(n)/\log(R))$ register spills

FFTW's scheduler achieves this (asymptotic) bound independent of R

[1] Hong and Kung: "I/O Complexity: The red-blue pebbling game"

19

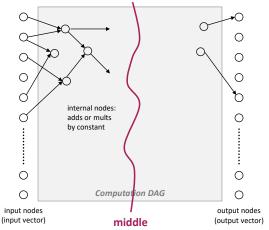
20

19

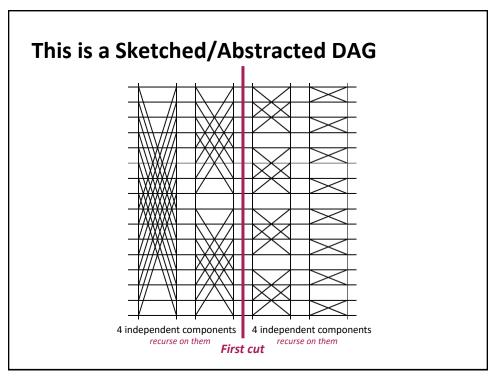
FFT-Specific Scheduler: Basic Idea

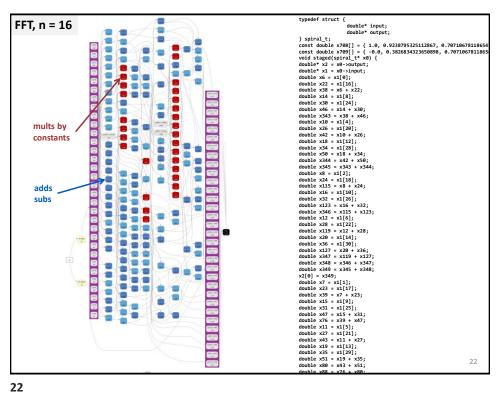
Cut DAG in the middle

Recurse on the connected components



How to find the middle?





Codelet Examples

Notwiddle 2 (DFTrec)

Notwiddle 3 (DFTrec)

Twiddle 3 (DFTscaled)

Notwiddle 32 (DFTrec)

Code style:

- Single static assignment (SSA)
- Scoping (limited scope where variables are defined)

23

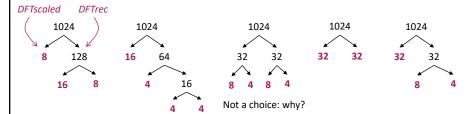
23

```
Choices used for platform adaptation
5: Adaptivity
 // code sketch
void DFT(int n, cpx *x, cpx *y) {
  if (use_base_case(n))
    DFTbc(n, x, y); // use base case
    int k = choose_dft_radix(n); // ensure k <= 32</pre>
    int m = n/k;
    for (int i = 0; i < k; ++i)</pre>
      DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(...) is
    for (int j = 0; j < m; ++j)
       DFTscaled(k, y + j, t[j], m); // always a base case
  }
}
d = DFT_init(1024); // compute constant table; search for best recursion
            // use many times
d(x, y);
```

5: Adaptivity

d = DFT_init(1024); // compute constant table; search for best recursion d(x, y); // use many times

Choices: $\mathrm{DFT}_{km} = (\mathrm{DFT}_k \otimes \mathrm{I}_m) T_m^{km} (\mathrm{I}_k \otimes \mathrm{DFT}_m) L_k^{km}$



Base case = generated codelet is called

Exhaustive search to expensive

Solution: Dynamic programming

25

25

FFTW: Further Information

Previous Explanation: FFTW 2.x

FFTW 3.x:

- Support for SIMD/threading
- Flexible interface to handle FFT variants (real/complex, strided access, sine/cosine transforms)
- Complicates significantly the interfaces actually used and increases the size of the search space
- Requires about 20 different types of codelets (and around 60 different sizes for each)

	MMM Atlas	Sparse MVM Sparsity/Bebop	DFT FFTW
Cache optimization			
Register optimization			
Optimized basic blocks			
Other optimizations			
Autotuning			

	MMM Atlas	Sparse MVM Sparsity/Bebop	DFT FFTW	
Cache optimization	Blocking	Blocking (rarely useful)	Recursive FFT, fusion of steps	
Register optimization	Blocking	Blocking (changes sparse format)	Scheduling of small FFTs	
Optimized basic blocks	Unrolling, scalar replacement and SSA, scheduling, simplifications (for FFT)			
Other optimizations	_	-	Precomputation of constants	
Autotuning	Search: blocking parameters	Search: register blocking size	Search: recursion strategy	