
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

Advanced Systems Lab
Spring 2025
Lecture: Fast FFT implementation, FFTW

Instructor: Markus Püschel

TA: Tommaso Pegolotti, several more

Fast FFT: Example FFTW Library

www.fftw.org

Frigo and Johnson, FFTW: An Adaptive Software Architecture for the FFT,
ICASSP 1998

Frigo, A Fast Fourier Transform Compiler, PLDI 1999

Frigo and Johnson, The Design and Implementation of FFTW3, Proc. IEEE
93(2) 2005

2

1

2

http://www.fftw.org/

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

Cooley-Tukey FFT, n = 4

3

Fast Fourier transform (FFT)

Representation using matrix algebra

Data flow graph (right to left)

stride 2 → stride 1
2 DFTs of size 2
at stride 2 2 DFTs of size 2

FFT, n = 16 (Recursive, Radix 4)

4

3

4

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

Recursive Cooley-Tukey FFT

For powers of two n = 2t sufficient together with base case

5

decimation-in-time

decimation-in-frequency

radix

Fast Implementation (≈ FFTW 2.x)

Choice of algorithm

Locality optimization

Constants

Fast basic blocks

Adaptivity

6

5

6

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

1: Choice of Algorithm

Choose recursive, not iterative

7

Radix 2, recursive Radix 2, iterative

First recursive implementation we consider in this course

2: Locality Improvement

Straightforward implementation: 4 steps

▪ Permute

▪ Loop recursively calling smaller DFTs (here: 4 of size 4)

▪ Loop that scales by twiddle factors (diagonal elements of T)

▪ Loop recursively calling smaller DFTs (here: 4 of size 4)

4 passes through data: bad locality

Better: fuse some steps

8

7

8

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

2: Locality Improvement

9

stride k
↓

stride 1

schematic:

fuse: stage 2 fuse: stage 1
• compute k many DFTm with input stride k

and output stride 1

• writes to different location then it reads
from → out-of-place

DFTrec(m, x, y, k, 1);

DFT size

Interface needed for recursive call:

input/
output
vector

output stride

input stride

• compute m many DFTk*D with
input stride m and output stride m

• D is part of the diagonal T

• writes to the same location then it
reads from → inplace

Interface needed for recursive call:

DFTscaled(k, x, d, m);

DFT size
input =
output
vector

input stride =
output stride

diagonal elements

Cannot handle further recursion so in
FFTW it is a base case of the recursion

Can handle further recursion
(just strides change)

© Markus Püschel
Computer Science
© Markus Püschel
Computer Science

// code sketch
void DFT(int n, cpx *x, cpx *y) {
 …
 int k = choose_dft_radix(n); // ensure k small enough
 int m = n/k;

for (int i = 0; i < k; ++i)
 DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(…) is

for (int j = 0; j < m; ++j)
 DFTscaled(k, y + j, t[j], m); // always a base case
}

one loop one loop

n

k m

DFTscaled DFTrec

9

10

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

3: Constants

FFT incurs multiplications by roots of unity

In real arithmetic:
Multiplications by sines and cosines, e.g.,

Very expensive!

Observation: Constants depend only on input size, not on input

Solution: Precompute once and use many times

11

y[i] = sin(i·pi/128)*x[i];

d = DFT_init(1024); // init function computes constant table
d(x, y); // use many times

4: Optimized Basic Blocks

Just like loops can be unrolled, recursions can also be unrolled

Empirical study: Base cases for sizes n ≤ 32 useful (scalar code)

Needs 62 base cases or “codelets” (why?)

▪ DFTrec, sizes 2–32

▪ DFTscaled, sizes 2–32

Solution: Codelet generator (codelet = optimized basic block) 12

// code sketch
void DFT(int n, cpx *x, cpx *y) {
 if (use_base_case(n))
 DFTbc(n, x, y); // use base case

else {
 int k = choose_dft_radix(n); // ensure k <= 32

int m = n/k;
for (int i = 0; i < k; ++i)

 DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(…) is
for (int j = 0; j < m; ++j)

 DFTscaled(k, y + j, t[j], m); // always a base case
 }
}

11

12

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

FFTW Codelet Generator

All generated code is straightline code (no loops), SSA style

Can also generate specialized version for real inputs (= another 62
codelets) and some other variants

Codelet generator is written Monad style in Objective Caml

13

DAG
generator Simplifier Scheduler

DAG DAG

FFT codelet
generator

n
Codelet for DFTrec
Codelet for DFTscaled (twiddle codelet)

Small Example DAG

14

DAG: One possible unparsing:

13

14

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

DAG Generator

Knows FFTs: Cooley-Tukey, split-radix, Good-Thomas, Rader, represented
in sum notation

For given n, suitable FFTs are recursively applied to yield n (real)
expression trees for outputs y0, …, yn-1

Trees are fused to an (unoptimized) DAG

15

DAG
generator Simplifier Scheduler

DAG DAG

Simplifier

Applies standard optimizations also done by compiler:

▪ Algebraic transformations like simplifying mults by 0, 1, -1

▪ Common subexpression elimination (CSE)

Applies FFT-specific optimizations not typically done by a compiler

16

DAG
generator Simplifier Scheduler

DAG DAG

15

16

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

Simplifier: FFT-specific

Usually subractions in FFTs come in pairs (x-y), (y-x)

▪ Canonicalize to (x-y), -(x-y), gives more common subexpressions

Constants also usually come in pairs c, -c

▪ Make all positive, reduces register pressure

Find more common subexpressions for a linear transform algorithm

▪ CSE also on transposed DAG = transposed transform

17

DAG D DAG E DAG ET DAG FT DAG F DAG G
simplify simplify simplifytranspose transpose

was better than the
best known published algorithm

Simplifier: Real FFTs

Real FFT codelets can be obtained by pruning complex FFTs, i.e., dead
code elimination plus all other techniques in simplifier

18

Complex FFT DAG *= input is real

output is
conjugate complex

=
only first half is needed

17

18

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

Scheduler

Determines in which sequence the DAG is unparsed to C
(topological sort of the DAG)
Goal: minimize register spills

A 2-power FFT has an optimal operational intensity of I(n) = Θ(log(C)),
where C is the cache size [1]

Implies: For R registers Ω(n log(n)/log(R)) register spills

FFTW’s scheduler achieves this (asymptotic) bound independent of R

19
[1] Hong and Kung: “I/O Complexity: The red-blue pebbling game”

DAG
generator Simplifier Scheduler

DAG DAG

FFT-Specific Scheduler: Basic Idea

Cut DAG in the middle

Recurse on the connected components

20

input nodes
(input vector)

output nodes
(output vector)

Computation DAG

How to find the middle?

middle

internal nodes:
adds or mults
by constant

19

20

http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

First cut

4 independent components4 independent components

This is a Sketched/Abstracted DAG

recurse on themrecurse on them

22

typedef struct {
 double* input;
 double* output;
} spiral_t;
const double x708[] = { 1.0, 0.9238795325112867, 0.7071067811865476, 0.3826834323650898,
const double x709[] = { -0.0, 0.3826834323650898, 0.7071067811865476, 0.9238795325112867, 1.0, 0.9238795325112867, 0.7071067811865476
void staged(spiral_t* x0) {
double* x2 = x0->output;
double* x1 = x0->input;
double x6 = x1[0];
double x22 = x1[16];
double x38 = x6 + x22;
double x14 = x1[8];
double x30 = x1[24];
double x46 = x14 + x30;
double x343 = x38 + x46;
double x10 = x1[4];
double x26 = x1[20];
double x42 = x10 + x26;
double x18 = x1[12];
double x34 = x1[28];
double x50 = x18 + x34;
double x344 = x42 + x50;
double x345 = x343 + x344;
double x8 = x1[2];
double x24 = x1[18];
double x115 = x8 + x24;
double x16 = x1[10];
double x32 = x1[26];
double x123 = x16 + x32;
double x346 = x115 + x123;
double x12 = x1[6];
double x28 = x1[22];
double x119 = x12 + x28;
double x20 = x1[14];
double x36 = x1[30];
double x127 = x20 + x36;
double x347 = x119 + x127;
double x348 = x346 + x347;
double x349 = x345 + x348;
x2[0] = x349;
double x7 = x1[1];
double x23 = x1[17];
double x39 = x7 + x23;
double x15 = x1[9];
double x31 = x1[25];
double x47 = x15 + x31;
double x76 = x39 + x47;
double x11 = x1[5];
double x27 = x1[21];
double x43 = x11 + x27;
double x19 = x1[13];
double x35 = x1[29];
double x51 = x19 + x35;
double x80 = x43 + x51;
double x88 = x76 + x80;
double x9 = x1[3];

FFT, n = 16

mults by
constants

adds
subs

21

22

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

Codelet Examples

Notwiddle 2 (DFTrec)

Notwiddle 3 (DFTrec)

Twiddle 3 (DFTscaled)

Notwiddle 32 (DFTrec)

Code style:

▪ Single static assignment (SSA)

▪ Scoping (limited scope where variables are defined)

23

// code sketch
void DFT(int n, cpx *x, cpx *y) {
 if (use_base_case(n))
 DFTbc(n, x, y); // use base case

else {
 int k = choose_dft_radix(n); // ensure k <= 32

int m = n/k;
for (int i = 0; i < k; ++i)

 DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(…) is
for (int j = 0; j < m; ++j)

 DFTscaled(k, y + j, t[j], m); // always a base case
 }
}

5: Adaptivity

24

Choices used for platform adaptation

d = DFT_init(1024); // compute constant table; search for best recursion
d(x, y); // use many times

23

24

n1_2.c
n1_3.c
t1_3.c
m1_32.c

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

5: Adaptivity

Exhaustive search to expensive

Solution: Dynamic programming

25

d = DFT_init(1024); // compute constant table; search for best recursion
d(x, y); // use many times

Choices:

1024

8 128

16 8

Base case = generated codelet is called

1024

16 64

4 16

4 4

1024

32 32

1024

32 32

8 4

1024

32 32

8 48 4

Not a choice: why?

DFTrecDFTscaled

FFTW: Further Information

Previous Explanation: FFTW 2.x

FFTW 3.x:

▪ Support for SIMD/threading

▪ Flexible interface to handle FFT variants (real/complex, strided access,
sine/cosine transforms)

▪ Complicates significantly the interfaces actually used and increases the size
of the search space

▪ Requires about 20 different types of codelets (and around 60 different sizes
for each)

26

25

26

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2025

© Markus Püschel
Computer Science
© Markus Püschel
Computer Science

MMM
Atlas

Sparse MVM
Sparsity/Bebop

DFT
FFTW

Cache
optimization

Blocking
Blocking

(rarely useful)

Recursive FFT,
fusion of steps

Register
optimization

Blocking
Blocking
(changes sparse
format)

Scheduling of
small FFTs

Optimized basic
blocks

Unrolling, scalar replacement and SSA, scheduling,
simplifications (for FFT)

Other
optimizations

— —
Precomputation of
constants

Autotuning
Search: blocking
parameters

Search: register
blocking size

Search: recursion
strategy

© Markus Püschel
Computer Science
© Markus Püschel
Computer Science

MMM
Atlas

Sparse MVM
Sparsity/Bebop

DFT
FFTW

Cache
optimization

Blocking
Blocking

(rarely useful)

Recursive FFT,
fusion of steps

Register
optimization

Blocking
Blocking
(changes sparse
format)

Scheduling of
small FFTs

Optimized basic
blocks

Unrolling, scalar replacement and SSA, scheduling,
simplifications (for FFT)

Other
optimizations

— —
Precomputation of
constants

Autotuning
Search: blocking
parameters

Search: register
blocking size

Search: recursion
strategy

27

28

	Slide 1: Advanced Systems Lab Spring 2025 Lecture: Fast FFT implementation, FFTW
	Slide 2: Fast FFT: Example FFTW Library
	Slide 3: Cooley-Tukey FFT, n = 4
	Slide 4: FFT, n = 16 (Recursive, Radix 4)
	Slide 5: Recursive Cooley-Tukey FFT
	Slide 6: Fast Implementation (≈ FFTW 2.x)
	Slide 7: 1: Choice of Algorithm
	Slide 8: 2: Locality Improvement
	Slide 9: 2: Locality Improvement
	Slide 10
	Slide 11: 3: Constants
	Slide 12: 4: Optimized Basic Blocks
	Slide 13: FFTW Codelet Generator
	Slide 14: Small Example DAG
	Slide 15: DAG Generator
	Slide 16: Simplifier
	Slide 17: Simplifier: FFT-specific
	Slide 18: Simplifier: Real FFTs
	Slide 19: Scheduler
	Slide 20: FFT-Specific Scheduler: Basic Idea
	Slide 21: This is a Sketched/Abstracted DAG
	Slide 22
	Slide 23: Codelet Examples
	Slide 24: 5: Adaptivity
	Slide 25: 5: Adaptivity
	Slide 26: FFTW: Further Information
	Slide 27
	Slide 28

