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Lecture: Discrete Fourier transform, fast Fourier transforms

Instructor: Markus Püschel

TA: Tommaso Pegolotti, several more

Linear Transforms

Overview: Transforms and algorithms

Discrete Fourier transform

Fast Fourier transform algorithms (FFTs)

After that:

▪ Optimized implementation and autotuning (FFTW)

▪ Automatic program synthesis (Spiral)
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FFT References
FFTs:

▪ Cooley and Tukey, An algorithm for the machine calculation of complex Fourier series,” 
Math. of Computation, vol. 19, pp. 297–301, 1965

▪ Nussbaumer, Fast Fourier Transform and Convolution Algorithms, 2nd ed., Springer, 1982

▪ van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992

▪ Tolimieri, An, Lu, Algorithms for Discrete Fourier Transforms and Convolution, Springer, 2nd 
edition, 1997

▪ Franchetti, Püschel, Voronenko, Chellappa and Moura, Discrete Fourier Transform on 
Multicore, IEEE Signal Processing Magazine, special issue on ``Signal Processing on Platforms 
with Multiple Cores'', Vol. 26, No. 6, pp. 90-102, 2009

Complexity: Bürgisser, Clausen, Shokrollahi, Algebraic Complexity Theory, Springer, 1997

History: Heideman, Johnson, Burrus: Gauss and the History of the Fast Fourier Transform, 
Arch. Hist. Sc. 34(3) 1985
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Linear Transforms
Very important class of functions: signal processing, communication, scientific 
computing, …

Mathematically: 
Change of basis = Multiplication by a fixed (entries are constants) matrix T

Equivalent definition: Summation form

Operations in linear transforms: additions and multiplications by constants
4

Output Input

T•
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Linear Transforms
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Compute: y = Tx x: input vector, y: output vector, T: fixed transform matrix

Example: Discrete Fourier transform (DFT)

1. form (standard in signal processing):

given:

compute:
primitive nth root of 1

2. form (we will use):

given:

compute:

How does the DFT2 matrix look?
Second row of DFT4 matrix?

Smallest Relevant Example: DFT, Size 2
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Transform (matrix):

Computation:

As graph (direct acyclic graph or DAG):

or

called a butterfly http://charlottesmartypants.blogspot.com/
2011_02_01_archive.html

How many ops to compute 
the DFT2 of a vector?
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DFT, Size 4
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How many (complex) operations to compute the DFT4 of a (complex) vector?

12 complex adds/subs and 4 mults by i

Transforms: Examples

A few dozen transforms are relevant

Some examples
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universal tool 

JPEG

MPEG
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Transform Algorithms
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Example: Cooley-Tukey Fast Fourier Transform (FFT), size 4

12 adds
4 mults by i

0 ops4 adds4 adds 1 mult by i

Namely, instead of y = Tx we can compute in steps

m steps
This reduces the op count only if:
• the Ti are sparse
• m is not too large

An algorithm for y = Tx is given by a factorization

Cooley-Tukey FFT, n = 4
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Fast Fourier transform (FFT)

Representation using matrix algebra

Data flow graph (right to left)

stride 2 → stride 1
2 DFTs of size 2
at stride 2 2 DFTs of size 2
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Example Recursive FFT, n = 16, radix 4
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stride 4 → stride 14 DFTs of size 4
at stride 4 4 DFTs of size 4

Kronecker product:

General Radix, Recursive Cooley-Tukey FFT
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Assume n = km:
diagonal matrix with
roots of unity3 key structures: 

permutation matrix

A
A

A

A

= *

for i = 0:k-1
  y[im:im+m-1] = A*x[im:im+m-1]

= *

m A’s at stride m

for i = 0:m-1
  y[i:m:i+(k-1)m] = A*x[i:m:i+(k-1)m]

view x as m x k matrix: 

m

k m

k

matrix transposition

for i = 0:k-1
  for j = 0:m-1
    y[im+j] = x[i+kj]

equivalent: read at stride 1, write at stride m

read at stride k, write at stride 1
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Example FFT, n = 16 (Recursive, Radix 4)
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stride 4 → stride 14 DFTs of size 4
at stride 4 4 DFTs of size 4

DFT4 is expanded 
recursively

Recursive Cooley-Tukey FFT

For powers of two n = 2t sufficient together with base case

Cost:

▪ (complex adds, complex mults) = (n log2(n), n log2(n)/2) 
independent of recursion

▪ (real adds, real mults) ≤ (3n log2(n), 2n log2(n)) = 5n log2(n) flops
depends on recursion: best is at least radix-8
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decimation-in-time

decimation-in-frequency

radix
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Recursive vs. Iterative FFT

Recursive, radix-k Cooley-Tukey FFT

Iterative, radix 2, decimation-in-time/decimation-in-frequency
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Radix 2, recursive

Radix 2, iterative
same DAG, different execution order
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Recursive vs. Iterative

Iterative FFT computes in stages of butterflies =
log2(n) passes through the data

Recursive FFT reduces passes through data =
better locality

Same computation graph but different topological sorting

Rough analogy:
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MMM DFT

Triple loop Iterative FFT

Blocked Recursive FFT

The FFT Is Very Malleable
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Iterative FFT, Radix 2
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Pease FFT, Radix 2
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Stockham FFT, Radix 2
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Six-Step FFT
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Multi-Core FFT
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Transform Algorithms
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Cooley-Tukey FFT
Prime-factor FFT
Rader FFT
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Complexity of the DFT

Measure: Lc, 2 ≤ c 

▪ Complex adds count 1

▪ Complex mults by a constant a with |a| < c counts 1

▪ L2 is strictest, L∞ the loosest (and most natural)

Upper bounds:

▪ n = 2k: L2(DFTn) ≤ 3/2 n log2(n) (using Cooley-Tukey FFT)

▪ General n: L2(DFTn) ≤ 8 n log2(n) (needs Bluestein FFT)

Lower bound: 

▪ Theorem by Morgenstern: If c < ∞, then Lc(DFTn) ≥ ½ n logc(n) 

▪ Implies: in the measure Lc for c < ∞ the DFT is Θ(n log(n))
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Lowest Known FFT Cost (Powers of 2)

A modified split-radix FFT with fewer arithmetic operations, Johnson and 
Frigo, IEEE Trans. Signal Processing 55(1), pp. 111-119, 2007

Number of flops (n = 2k):
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History of FFTs

The advent of digital signal processing is often attributed to the FFT  
(Cooley-Tukey 1965)

History:

▪ Around 1805: FFT discovered by Gauss [1]
(Fourier publishes the concept of Fourier analysis in 1807!)

▪ 1965: Rediscovered by Cooley-Tukey

27
[1]: Heideman, Johnson, Burrus: “Gauss and the History of the Fast Fourier Transform” Arch. Hist. Sc. 34(3) 1985

Carl-Friedrich Gauss

Contender for the greatest mathematician of all times

Some contributions: Modular arithmetic, least square analysis, normal 
distribution, fundamental theorem of algebra, Gauss elimination, Gauss 
quadrature, Gauss-Seidel, non-Euclidean geometry, …
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1777–1855
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http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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