
ASL Spring 2025 Course Project: Sparse Ternary Matrix Mul=plica=on

Supervising TA: Shien Zhu (shien.zhu@inf.ethz.ch)

Problem Defini-on:

Given a dense matrix X of size (M, K), a ternary sparse matrix W of size (K, N), and a dense bias
vector b of size N, your task is to calculate Y = XW + b and Y = PReLU(XW + b), where PReLU
refers to the PyTorch Framework for the PReLU implementaOon [1].

The ternary sparse matrix W only contains {-1, 0, +1} and can be preprocessed to a specific
data format. You are allowed, and encouraged, to design and modify the ternary sparse
matrix format and the sparse matrix mul-plica-on algorithm. The lecture on sparse linear
algebra gives you a good starOng point to explore different formats [2].

In the following, we give examples of the data format and sparse GEMM algorithm.

Example Project Template:

One example project template is available at github.com/yiweifengya/ASL_SparseGEMM.
You can implement the code on an X86 CPU or ARM CPU.

Example Sparse Matrix Format:

class SparseFormat {
public:
 vector<int> col_start_pos; //start point of this column in row index
 vector<int> col_start_neg;
 vector<int> row_index_pos; //the row index of +1
 vector<int> row_index_neg; //the row index of -1
}

Sparse formats use specialized data structures to store only the nonzero values of a matrix. As
an example, we use here a variant of the Compressed Sparse Column (CSC) format, called
Ternary CSC (TCSC). TCSC compresses the data by storing the indices of posiOve and negaOve
values separately. To do so we need

• The row_index array stores the indices of the rows of the nonzero values for each
column,

• The col_start arrays indicates where each new column starts in the row_index array.

Then, we simply store the column offsets and row indices for 1 and -1 separately, as the
following figure shows.

Example Algorithm:

We can calculate Y = XW + b similar to general matrix mulOplicaOon by using three for loops
on M, N, K. The only difference is that we selecOvely add or sub X[m,k] according to the index
of +1 and -1 in W, resulOng in two for loops on K.

void sparseGEMM(float* X, SparseFormat W, float* b, float* Y, int M, int N, int K) {
 for (int m = 0; m < M; m++) {
 for (int n = 0; n < N; n++) {
 float y = 0;

// Add all X(m,k) where W(k,n) is +1
 for (int k = W.col_start_pos[n]; k < W.col_start_pos[n + 1]; k++) {
 y += X[m * K + W.row_index_pos[k]];
 }

// Sub all X(m,k) where W(k,n) is -1
 for (int k = W.col_start_neg[n]; k < W.col_start_neg[n + 1]; k++) {
 y -= X[m * K + W.row_index_neg[k]];
 }
 Y[m*N+n] = y + b[n];
 }
 }
}

The PReLU can be implemented as a standalone funcOon or fused into the sparseGEMM
funcOon to reduce the memory loading overhead, depending on your benchmarking results.

Benchmarking Configura-ons:

Here is a reference list of matrix sizes for benchmarking. For each M[i], K[j] and N[j] are
always selected in pairs. Thus, there are 8x8=64 matrix sizes at max. Note that some matrix
shapes may be too large to execute depending on your computer hardware. You can cut
down these cases and add some smaller configuraOons if needed.

int M[] = { 1, 16, 64, 256, 1000, 4000, 16000, 64000 };

int K[] = { 512, 1024, 2048, 4096, 2048, 4096, 8192, 16384 };

int N[] = { 2048, 4096, 8192, 16384, 512, 1024, 2048, 4096 };

The sparsity level should be tested in four cases: 50%, 75%, 87.5%, and 93.75%, meaning
1/2, 1/4, 1/8, and 1/16 of the W matrix are non-zero values.

References

[1] hnps://pytorch.org/docs/stable/generated/torch.nn.PReLU.html

[2] hnps://acl.inf.ethz.ch/teaching/fastcode/2024/slides/11-sparse.pdf

