
263-0007-00: Advanced Systems Lab
Assignment 4: 120 points

Due Date: April 10th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2025/

Questions: fastcode@lists.inf.ethz.ch

Academic integrity:

All homeworks in this course are single-student homeworks. The work must be all your own. Do not copy any parts

of any of the homeworks from anyone including the web. Do not look at other students’ code, papers, or exams. Do

not make any parts of your homework available to anyone, and make sure no one can read your files. The university

policies on academic integrity will be applied rigorously.

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after
the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be available
for submission on the system 2 days after the deadline. However, if the accumulated time of the previous
homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Neatness)
5 points in a homework are given for neatness.

The exercises start from the next page.
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Exercises

1. Stride Access (30 pts)

Consider the following code executed on a machine with a cache with blocks of size 32 bytes, a total
capacity of 2 KiB and a write-back/write-allocate policy. Assume that the only memory accesses are to
entries of O and A and occur in the order that they appear (from right to left when in the same line).
The cache is initially cold and array A begins at memory address 0, while array O begins immediately
after the last element of A. You can assume that A is of size 2n, O is of size n× 2n−1 and n ≤ 32. As
the size of a boolean is implementation-specific, you can assume it to be 4 bytes.

1 void qmc(bool* A, bool* O, int n){

2 for (int v = 0; v < n; v++){

3 unsigned int block_size = 1U << v;

4 unsigned int block_count = 1U << (n - v - 1);

5 bool* O_v = &O[(( long) v) << (n - 1)];

6 for (int b = 0; b < block_count; b++) {

7 bool* A_b = &A[2 * b * block_size ];

8 for (int p = 0; p < block_size; p++) {

9 O_v[b * block_size + p] = A_b[p] && A_b[block_size + p];

10 }

11 }

12 }

13 }

Answer the following. Justify your answers. In case you use a script to compute any of your answers,
hand in the script as well, use only Python.

(a) Consider a direct-mapped cache, determine the largest n such that only compulsory misses occur.

Solution: Since A and O are stored continuously and we have a direct-mapped cache, we can
find two sufficient conditions for having only compulsory misses:

i. A and B completely fit into cache.

ii. A and all but the last row of B fit into cache and there are at least 28 additional bytes:
this holds because parts of A may be evicted element-by-element after their last use. The
additional space is required because the size of a cache line does not match the size of a
boolean and hence, when the position in A and O is mapped to the same cache line, the two
need to be far enough apart from one another to avoid evicting the current line.

For n ≥ 4 the second condition is more tight, so:

Only compulsory misses occur ⇔ 4 · (2n + (n− 1) · 2n−1) + 28 ≤ 2048

For n = 7, the inequality does not hold (by a difference of 28) and for n = 6 it does, so this is the
largest n such that only compulsory misses occur.

(b) Consider a direct-mapped cache, determine the miss rate when n = 8.

Solution: Consider the for-loop over v:

For the first two iterations, all of A and the first two rows of O fit into cache leading to only
compulsory misses and A being still completely contained in cache afterwards.

The third iteration will cause the first half of A to be evicted completely (because the addresses of
the elements of O are mapped to the same cache positions). The block size is going to be 22 = 4,
leading to each block taking up half a cache line. Consequently, due to the access pattern, none
of these evicted elements will be read back directly after the first iteration of the for-loop over b
(A is accessed before the conflicting element of B). For the first iteration, however, the cache line
will be read again 3 times from A and 3 times from B (because the positions of A and O fall into
the same line).

The fourth iteration will cause the second half of A to be evicted completely. Some of the elements
will already be read back. We also have 7 non-compulsary misses for A and O due to a collision
at the tail of the row of O (block size is 8). However, the remainder will be read back during the
fifth iteration anyways.
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Apart from these misses, no further misses are caused by the fifth and sixth iteration.

The seventh iteration will cause the first half of A to be evicted again and will also contribute
non-compulsory misses during its first iteration of the for-loop over b. The block size is 26 = 64,
so 56 (7 per cache line) misses are going to occur from A and B each. At the end of this iteration,
only the second half of A is going to be in cache.

In the eighth iteration, the phenomenon that we observed with the conflicting addresses is going
to occur between the second (instead of the first) block and the output array leading to a total of
112 misses to A and O each (block size is 27 = 128). Also the lower half of A will be read again
completely.

So in total the described phenomenon causes 2 · (3 + 7+ 56+ 112) = 356 non-compulsory misses.
Additionaly, 32 misses occur because A has to be read back once completely (after iterations three
and four) and 16 misses occur when the first half of A is read back during the eighth iteration.

Consequently, 356 + 32 + 16 = 404 non-compulsory misses occur. There are also 28+8·27
8 = 160

compulsory misses, resulting in 564 total misses. On the other hand, there are 3 · 8 · 27 = 3072
accesses, resulting in a miss rate of around 0.1836.

(c) Consider a 2-way associative cache with a LRU replacement policy, determine the miss rate when
n = 8. The size of the cache does not change.

Solution: A is read completely in each iteration of the for-loop over v. So during its first
iteration, A will be read into the first set and O will be read into the lower half of the second set.
In subsequent iterations, the elements of O will have been less recently accessed than the ones
of A, leading to the eviction of the (no longer used) elements of O and keeping A in cache. So
only the 160 compulsory misses occur while the number of accesses stays at 3072 (see (b)). So
the miss-rate is around 0.0521.
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2. Cache Mechanics (25 pts)

Consider the following code executed on a machine with a direct-mapped write-back/write-allocate
cache with blocks of size 16 bytes and a total capacity of 128 bytes. Assume that memory accesses
occur in exactly the order that they appear, and that all scalar variables (result, i, j, x0, y0) remain in
registers and do not cause cache misses.

Array x is cache-aligned (first element goes into first cache block) and the first element of y is imme-
diately after the last element of x in memory.

Array x is a matrix of size 50× 2, and array y is a matrix of size 2× 2. sizeof(float) = 4 bytes.

1 struct data_t {

2 float a;

3 float b;

4 };

5
6 #define N 50

7 #define M 2

8
9 float comp(data_t* x, data_t* y) {

10 float result = 0;

11 for(int i = 0; i < N; i+=5){

12 for(int j = 0; j < M; j++){

13 float x0 = x[i*M+j].a;

14 float y0 = y[(i%M)*M+j].b;

15 result += x0 * y0;

16 }

17 // Draw state of cache and write hit miss pattern here for i == 15

18 }

19 // Draw state of cache and write hit miss pattern here

20 return result;

21 }

Show your work. In case you use a script to compute any of your answers, hand in the script as well,
use only Python.

(a) Considering the cache misses of the computation, compute the following:

i. determine the miss/hit pattern for x and y (something like x: MMHH. . . , y: MMMH. . . ) at
line 16, for i = 15. Consider all the accesses happening from i = 0 to i = 15 included (i=0,
5, 10, 15).

ii. draw the state of the cache at line 16, for i = 15.

iii. draw the state of the cache at the end of the computation.

Solution:

Miss/hit pattern:
x: MHMHMMMH
y: MHMHMMHH

State of the cache:

i = 15

Set 0
0 x0.a, x0.b, x1.a, x1.b
1
2 y0.a, y0.b, y1.a, y1.b
3 y2.a, y2.b, y3.a, y3.b
4
5 x10.a, x10.b, x11.a, x11.b
6
7 x30.a, x30.b, x31.a, x31.b
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end

Set 0
0 x80.a, x80.b, x81.a, x81.b
1 x50.a, x50.b, x51.a, x51.b
2 y0.a, y0.b, y1.a, y1.b
3 y2.a, y2.b, y3.a, y3.b
4 x40.a, x40.b, x41.a, x41.b
5 x90.a, x90.b, x91.a, x91.b
6 x60.a, x60.b, x61.a, x61.b
7 x30.a, x30.b, x31.a, x31.b

(b) Repeat the previous task assuming now that the cache is 4-way set associative and uses a LRU
replacement policy. The cache size and block size stay the same.

Solution:

Miss/hit pattern:
x: MHMHMHMH
y: MHMHHHHH

State of the cache:

i = 15

Set 0 1 2 3
0 y0.a, y0.b, y1.a, y1.b x20.a, x20.b, x21.a, x21.b x0.a, x0.b, x1.a, x1.b
1 y2.a, y2.b, y3.a, y3.b x30.a, x30.b, x31.a, x31.b x10.a, x10.b, x11.a, x11.b

end

Set 0 1 2 3
0 y0.a, y0.b, y1.a, y1.b x80.a, x80.b, x81.a, x81.b x60.a, x60.b, x61.a, x61.b x40.a, x40.b, x41.a, x41.b
1 y2.a, y2.b, y3.a, y3.b x90.a, x90.b, x91.a, x91.b x70.a, x70.b, x71.a, x71.b x50.a, x50.b, x51.a, x51.b
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3. Rooflines (40 pt) Consider a processor with the following hardware parameters (assume 1GB = 109B):

• SIMD vector length of 256 bits.

• The following instruction ports that execute floating point operations:

– Port 0 (P0): FMA, ADD, MUL

– Port 1 (P1): FMA, ADD, MUL

Each can issue 1 instruction per cycle and each instruction has a latency of 1.

• One write-back/write-allocate cache with blocks of size 64 bytes.

• Read bandwidth from the main memory is 9.6 GB/s.

• The processor’s frequency is 3 GHz.

(a) Draw a roofline plot for the machine. Consider only double-precision floating point arithmetic.
Consider only reads. Include a roofline for when vector instructions are not used and for when
vector instructions are used.

(b) Consider the following functions. For each, assume that vector instructions are not used, and de-
rive hard upper bounds on its operational intensity (consider only loads) based on its instruction
mix and compulsory misses. Ignore the effects of aliasing and assume that no optimizations
that change operational intensity are performed (the computation stays as is). All arrays are
cache-aligned (first element goes into first cache set) and don’t overlap in memory. You can
further assume that all variables stay in registers.

1 // x, y, z are all of size n

2 void comp1(double *x, double *y, double *z, int n) {

3 for (int i = 0; i < n; i++) {

4 for (int j = 0; j < n; j++){

5 z[i] = z[i] + x[j] * y[j >> 4];

6 }

7 }

8 }

9
10 // A, B, C are all of size n * n

11 void comp2(double *A, double *B, double *C, double alpha , double beta , int n) {

12 for (int i = 0; i < n; i++) {

13 for (int j = 0; j < n; j++){

14 C[i*n+j] = C[i*n+j] + A[i*n+j]*B[i*n+j]*alpha + beta;

15 }}}

(c) For each computation, derive the maximum performance for n = 5, n = 20, n = 40. Assume you
write code that attains the performance and operational intensity bounds, and add the perfor-
mance to the roofline plot (there should be six dots, one for each n for the two functions).

(d) For each computation, what is the maximum speedup you could achieve by parallelizing it with
vector intrinsics? Add the points corresponding to n = 5, n = 20, n = 40 on the roofline plot.

(e) Consider now this computation. Assume that n2 is much larger than the last level cache. Meaning
each function call needs to reload all the input matrices.

1 double *A, *B, *C, *D; // All these are n * n

2 double a0, a1, a2 , a3 , a4;

3 double b0, b1, b2 , b3 , b4;

4
5 // Initializing all the inputs

6
7 comp2(A, B, C, a0, b0, n);

8 comp2(B, D, C, a1, b1, n);

9 comp2(B, D, C, a2, b2, n);

10 comp2(D, D, C, a3, b3, n);

11 comp2(A, D, C, a4, b4, n);

Considering the bound found in (c), derive a lower bound on the runtime of the code for n = 50.
You are not allowed to change the code.
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Pg 6 of 9 Computer Science
ETH Zurich



(f) Now, assume you are allowed to change the code above, how would you optimize it? The result in
the end needs to remain the same, i.e C = a0 ·AB+b0+ . . . a4 ·AD+b4. Explain the optimization
and give the new bound on the operational intensity, and on the runtime for n = 50. Add the
point on the roofline plot for the optimized code.

Solution:
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Roofline plot:

Scalar roofline Vector roofline comp1 - scalar comp2

comp1 - vector Question e Question f

(a) β = 9.6
3 = 3.2 bytes/cycle, Max performance is obtained when doing 2 FMAs at the same cycle

=⇒ 4 flops. Memory bound threshold, βI = π =⇒ I = 4/3.2 = 1.25 , βI = πv =⇒ I =
16/3.2 = 5

(b) Considering only compulsory misses.

For comp1: Q(n) ≥ 8(2n+ n
16 ) = 16n+ n

2 = 33n
2 , W (n) = 2n2, I(n) ≤ 4n2

33n = 4n
33

For comp2 : Q(n) ≥ 8 · 3n2, W (n) = 4n2, I(n) = 4n2

24n2 = 1/6.

(c) For comp1:

i. n = 5: I(5) ≈ 0.61 < 1.25. Memory bound. βI(5) ≈ 1.94

ii. n = 20: I(20) ≈ 2.42 > 1.25. Compute bound. Peak performance 4

iii. n = 40: I(40) ≈ 4.85 > 1.25. Compute bound. Peak performance 4

For comp2, the operational intensity is constant. Therefore, the performance is bound by 0.53
flops/cycles.

(d) For comp1:

i. n = 5: I(5) ≈ 0.61 < 5. Memory bound. βI(5) ≈ 1.94. Speedup is 1

ii. n = 20: I(20) ≈ 2.42 < 5. Memory bound. βI(20) ≈ 7.76. Speedup is 7.76
4 = 1.94

iii. n = 40: I(40) ≈ 4.85 < 5. Memory bound. βI(40) ≈ 15.52. Speedup is 15.52
4 = 3.88

Comp2 cannot be improved. The points are on the roofline plot.
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(e) Since comp2 is memory bound, and we need to load all three matrices at every function call, the

final runtime will be T > 5·4n2

0.5 , for n = 50 we have T > 100k cycles.

(f) Now we can change the code, since all matrices are of the same size we can easily merge the
loops. This reduces Q(n) significantly from 5 · 24n2 to 32n2. W (n) = 20n2, I(n) = 20/32, max
performance is now 2 flops/cycle. Therefore, T > 25k cycles, 4× increase in performance (decrease
in runtime).

4. Cache Miss Analysis (20 pts)

Consider the following computation that performs a blocked matrix multiplication

C = C +A ·B,

for square matrices A, B, and C of size n× n using a tiled i-p-j loop order:

1 void blocked_mmm(double *A, double *B, double *C, int n, int b) {

2 for (int i = 0; i < n; i += b) {

3 for (int j = 0; j < n; j += b) {

4 for (int p = 0; p < n; p += b) {

5 for (int ii = i; ii < i + b; ii++) {

6 for (int pp = p; pp < p + b; pp++) {

7 double temp = A[ii*n + pp];

8 for (int jj = j; jj < j + b; jj++) {

9 C[ii*n + jj] += temp * B[pp*n + jj];

10 }

11 }

12 }

13 }

14 }

15 }

16 }

Assume that the code is executed on a machine with a write-back/write-allocate fully-associative cache
with blocks of size 64 bytes, a total capacity of γ doubles and with a LRU replacement policy. Assume
that

• n is divisible by b,

• b is a multiple of 8,

• cold caches,

• all matrices are cache-aligned.

Justify your answers. In case you use a script to compute any of your answers, hand in the script as
well, use only Python.

(a) Derive, as precisely as possible, an exact expression (in terms of n and b) for the total number of
cache misses incurred for each matrix. Assume that, within each matrix block of size b× b, each
cache line is loaded exactly once (there are only compulsory misses).

Solution: Each b × b block of A is stored in row-major order; each row needs b
8 cache lines, so

one block incurs b2

8 misses. With n2

b2 blocks, each matrix has n2

8 misses.

(b) Give the exact total number of cache misses for the entire computation.

Solution: Total misses = n2

8 (for A) + n2

8 (for B) + n2

8 (for C) = 3n2

8 .

(c) For each matrix, specify which type(s) of locality (spatial and/or temporal) are exploited by the
blocked algorithm.

Solution:

• A: spatial (contiguous rows) and temporal (reuse within block).

• B: spatial (contiguous rows) and temporal (reuse within block).

• C: spatial (row-wise updates) and temporal (accumulation within block).
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(d) Determine the minimum cache capacity γmin (in doubles) required so that the computation suffers
only compulsory misses.

Solution: There must be space for all three blocks, therefore γmin = 3b2 doubles.
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