
263-0007-00: Advanced Systems Lab
Assignment 1: 100 points

Due Date: Th, March 6th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2025/

Questions: fastcode@lists.inf.ethz.ch

Exercises:

1. (15 pts) Get to know your machine
Determine and create a table for the following microarchitectural parameters of your computer:

(a) Processor manufacturer, name, number and microarchitecture (e.g. Skylake, Ice-Lake, etc).

Solution: Intel Xeon Silver 4410Y, Sapphire Rapids

(b) CPU base frequency.

Solution: 2.0 GHz is the nominal CPU frequency.

(c) CPU maximum frequency. Does your CPU support Frequency scaling (Turbo Boost or a similar
technology)?

Solution: It does support Turbo Boost, and the maximum frequency is 3.9GHz.

(d) Phase in the Intel’s development model: Tick, Tock or Optimization. (if applicable)

Solution: Opt phase (Golden Cove).

X86 processors offer two different floating-point instruction sets, namely x87 and SSE/SSE2, that
can perform scalar floating-point operations. For example, a floating-point division can be performed
using either FDIV (from x87) or DIVSD (from SSE2) assembly instructions. The x87 instruction set,
however, is becoming deprecated but is still supported for backward compatibility.

Consider the following instruction:

1 #define MAX(a, b) ((a) > (b) ? (a) : (b))

Create a C/C++ file that uses this macro to compute the maximum of two double-precision floating-
point numbers. What instruction is generated by the compiler in the following cases? Does the
instruction belong to the x87 instruction set? Explain your results. Hint : you can output the assembly
using the -S flag using GCC.

(e) Compile using -O0, i.e no optimizations.

Solution: Without optimizations the compiler translates the ternary operator as a if-then-else
operation. Therefore, it executes the compares as they are written in code.

(f) Compile using -O3.

Solution: With optimization, GCC compiles the macro by using the maxsd assembly instruction
from SSE.

Note:

• the compiler will remove the computation if you do not use its result,

• if you use values that are known at compile time, i.e if you hardcode the computation by writing
something along the lines of MAX(5.8, 7.8), the compiler will simplify the instruction.

For one core andwithout using SIMD vector instructions, determine the following about your machine.
In (g)-(j), make sure to use the correct floating-point instruction. Be careful not to choose one from
the x87 instruction set in case you have an x86 processor. Provide the reference where you found the
latency and throughput information.

(g) Maximum theoretical floating-point peak performance in flops/cycle.

Solution: Without SIMD instructions, two FMAs can be issued per cycle. Thus, 4 flops/cycle.
Possibly, one addition can be executed on port 5, meaning the theoretical peak performance is 5
flops/cycle.
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(h) Latency [cycles], throughput [ops/cycle] and instruction name for both double- and single-precision
floating-point multiplication.

Solution: Latency: 4 cycles. Throughput: 2 per cycle. Instruction: MULSS(D).

(i) Latency [cycles], throughput [ops/cycle] and instruction name for both double- and single-precision
square root operation.

Solution:
According to uops.info measurements:
For single precision (SQRTSS) Latency (alder-lake): 12-19 cycles. Throughput: 0.33 per cycle.
For double precision (SQRTSD) Latency (alder-lake): 13-19 cycles. Throughput: 0.22 per cycle.

(j) Latency [cycles], throughput [ops/cycle] and instruction name for both double- and single-precision
division operation.

Solution:
According to uops.info measurements:
For single precision (DIVSS) Latency (alder-lake): 11-12 cycles. Throughput: 0.33 per cycle.
For double precision (DIVSD) Latency (alder-lake): 13-15 cycles. Throughput: 0.25 per cycle.

2. (20 pts) Symmetric Matrix Multiplication

In this exercise, we provide a folder for computing C = αABT , with A being a n×n symmetric matrix
and B being a n× n matrix. Note, since A is symmetric, we only need to store half of it. The content
of the folder include

• A C file symm.c that includes the actual computation,

• A header file tsc x86.h that allows reading the time stamp counter (TSC) on x86 machines,

• A header file arm vct.h that allows reading the VCT registers1 on ARM machines,

• A header file kperf.h that allows reading the Processor Monitoring Unit (PMU) on ARM ma-
chines, which can contain various metrics (cycle count, instructions issued, ...). Requires sudo

access. More information on VCT and PMU can be found here.

The code uses different timers available to time the matrix multiplication. Inspect and understand the
code and do the following:

(a) Using your computer, compile and run the code. Compile with the highest level of optimization
provided by your compiler (with GCC, compile with the flag -O3). A modern compiler will
automatically vectorize this routine. Ensure you get consistent timings between timers and for at
least two consecutive executions. Don’t forget to disable Turbo Boost (if you can). (No need to
answer anything here)

(b) Inspect the compute() function in symm.c and answer the following:

i. Determine the exact number of floating-point additions and multiplications that it performs.
Solution: The code performs 2n3+n2 flops. In particular, it executes n3+n2 multiplications,
and n3 additions.

ii. Determine an upper bound on its operational intensity.
Solution: As stated above, W (n) = 2n3 + n2. The data loaded is: two n × n matrices
of doubles (C and B), and a n × n symmetric matrix A. To store half of the matrix we

need n(n + 1)/2 doubles. Therefore Q(n) = 8(2n2 + n(n + 1)/2). Thus, I = W (n)
Q(n) =

2n3+n2

8(2n2+n(n+1)/2) ≤ 2n3

20n2 = n
10 . In case you don’t consider the matrix C that is only read,

I ≤ n
6

(c) For all square matrices of sizes n between 100 and 1500, in increments of 100, create a performance
plot with n on the x-axis and performance (flops/cycle) on the y-axis. Create three series such that:

i. The first series has all optimizations disabled: use flag -O0.

1The ARM documentation does not state what VCT stands for, we think it should be virtual cycle timer. For more
information read here: https://developer.arm.com/documentation/102379/0101/The-processor-timers.
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ii. The second series has the major optimizations except for vectorization: use flags -O3 and
-fno-tree-vectorize. If you are using the clang compiler, also add -fno-slp-vectorize

flag to disable vectorization.

iii. The third series has all major optimizations enabled including vectorization: use flags -O3,
-ffast-math and -march=native. If you are using an Apple M processor and your compiler
doesn’t support -march=native you can use -mcpu=apple-mx instead, where x is the number
of your cpu.

Note: it is good practice to set long benchmarks such that they run at night; keep this in mind
for your project. You can automate with a simple bash script or Makefile.

Solution:
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Figure 1: Plots resulting from execution of symm.c. For the given flags, scalar peak performance is 5 f/c,
vector peak performance is 24 f/c with AVX2.

(d) Discuss performance variations of your plots and report the highest performance that you achieved.

Solution:

i. Non-optimized (v1): This results in machine code that is neither optimized or vectorized.
This is nice for debugging. However, the performance is low and flat across problem sizes.

ii. Optimized but non-vectorized (v2): The performance is better than in the previous case.
However, the performance suffers due to the limited amount of ILP caused by inter loop
dependencies.

iii. Fully optimized (v3): The -ffast-math flag enables ILP which is combined with vectorization
and significantly improves performance. The computation performs well for small problem
sizes but performance starts to degrade steadily as soon as the matrices no longer fits in the
cache. The highest performance that we achieve is 2.04 flops/cycle.
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3. (20 pts) Performance analysis and bounds

Assume that vectors u,w, x, y and z of length n are implemented using double precision floating-point
and combined as follows:

zi = zi + ceil(ui/wi) · xi + xi · yi.

We consider a Core i7 CPU with a Skylake microarchitecture. As seen in the lecture, it offers FMA
instructions (as part of AVX2). Recall that we consider cost of the FMA instruction as two floating-
point operations (an addition and a multiplication). Assume the bandwidths that are given in the
additional material from the lecture: Abstracted Microarchitecture. Assume that no optimization is
performed that simplifies floating-point arithmetic (i.e. -ffast-math flag is not used) and that the
ceil function is translated to a roundsd instruction by the compiler. Answer the following and justify
your answers.

(a) Define a suitable detailed floating-point cost measure C(n).

Solution:
C(n) = Cadd ·Nadd + Cmult ·Nmult + Cceil ·Nceil + Cdiv ·Ndiv.

(b) Compute the cost C(n) of the computation.

Solution:
Nadd = 2n,

Nmul = 2n,

Nceil = n,

Ndiv = n,

C(n) = Cadd · (2n) + Cmul · (2n) + Cceil · (n) + Cdiv · (n).

(c) Consider only one core without using vector instructions (i.e. using flag -fno-tree-vectorize)
and determine a hard lower bound (not asymptotic) on the runtime (measured in cycles), based on
each of the following cases:

i. The throughput of the floating-point operations. Assume that no FMA instructions are
used. Be aware that the lower bound is also affected by the available ports offered for the
computation (see lecture slides).

ii. The throughput of the floating-point operations where FMAs are used to fuse an addition
and a multiplication (i.e. -mfma flag is enabled).

iii. The throughput of data reads, for the following two cases: All floating-point data is L1-
resident, and all floating-point data is RAM-resident. Consider the best case scenario (peak
bandwidth and ignore latency). Note that arrays that are only written are also read and this
read should be included.

Solution: We can obtain bounds by examining which execution ports the instructions are sched-
uled to and the throughputs of those instructions.

i. The instruction mix in this case consists of 2n floating-point additions and 2n floating-point
multiplications, n floating-point ceil operations and n floating point division. The division
has a throughput of 1/4, meaning the execution unit (not the port) remains occupied for 4
cycles. All other instructions can be executed on the remaining execution units. Thus, the
lower bound is 4n.

ii. The situation remains unchanged. While some instructions can be fused into FMAs, the
division remains the bottleneck, leading to the same lower bound of 4n.

iii. Abstracted Microarchitecture shows peak bandwidth of L1, and an estimate for the RAM
throughput. In the computation, at least 5n doubles have to be read in total. Thus, rL1 ≥ 5n

8
and rRAM ≥ 5n

2 .

(d) Determine an upper bound on the operational intensity. Assume empty caches and consider only
reads but note: arrays that are only written are also read and this read should be included.

Solution: The operational intensity is I(N) ≤ 6nflops
8(5n)bytes = 6

40 flops/byte.
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4. (25 pts) Basic optimization

Consider the following function that computes the square euclidian norm ∥x − y∥22, where x, y are
vectors of doubles of length n.

1 void comp(double *x, double *y, int n) {

2 double s = 0.0;

3 for (int i = 0; i < n; i++) {

4 double m = x[i] - y[i];

5 s += m * m;

6 }

7 x[0] = s;

8 }

(a) Create a benchmarking infrastructure based on the timing function that produces the most consis-
tent results in Exercise 2 for you and for all two-power sizes n = 26, . . . , 223 create a performance
plot for the function comp with n on the x-axis (choose logarithmic scale) and performance (in flop-
s/cycle) on the y-axis. Randomly initialize all arrays. For all n repeat your measurements 30 times
reporting the median in your plot. Compile your code with flags -O3 -mfma2 -fno-tree-vectorize.
If you are using clang, add also the -fno-slp-vectorize and -ffp-contract=fast flags.

(b) Considering the latency and throughput information of floating-point operations in your ma-
chine, and the dependencies in comp, derive an upper bound on the performance (flops/cycles) of
comp when using the specified flags in (a), i.e., when FMA instructions are enabled (-mfma) but
vectorization is disabled (-fno-tree-vectorize).

Solution:
The runtime is limited by an inter loop dependency when accumulating the values in s. On
Skylake, the latency of the addition is 4 cycles. Thus, T (n) ≥ 4n. Since W (n) = 3n, the
performance is upper bounded by π(n) ≤ 0.75 flops/cycle. On some modern CPUs (see plot),
additions and subtractions are executed on a specialized FastADD execution unit. The latency of
the addition is instead 2-3 cycles. Thus, T (n) ≥ 2n. Since W (n) = 3n, the performance is upper
bounded by π(n) ≤ 1.5 flops/cycle.

(c) Perform optimizations that increase the ILP of function comp to improve its runtime. It is not
allowed to use vector instructions. Add the performance to the previous plot (so one plot with
two series in total for (a) and (c)). Compile your code with the same flags as before.

(d) Discuss performance variations of your plot and report the highest performance that you achieved.
Also discuss the optimizations that you performed to increase the ILP.

(e) Enroll and submit the code of your optimized function in Code Expert. Carefully read and follow
the instructions given in Code Expert to submit your code.

Solution:

2For Apple M1/M2 processors, the flag -mfma may not be supported. If this is the case, use instead -mcpu=apple-m1 or
-march=native.

263-0007-00 SS25 / Assignment 1
Instructor: Markus Püschel
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Figure 2: Performance plot (peak performance: 4 f/c for the given flags).

In the original code, the performance suffers from inter loop dependency which limits the amount
of ILP. Thus, the performance is 1.5 flops/cycle across all problem sizes and it’s consistent with
the upper bound derived in (b). Unrolling the loop and using separate accumulators increases
the ILP. For the given machine, we need at least 8 accumulators. We see that performance varies
across problem sizes. Performance is great when the data fits in cache, and becomes worse as the
size of the data grows. We can even see “steps”: performance is greatest when the data fits in L1,
and becomes incrementally worse as it no longer fits in subsequent levels of cache. The maximum
performance achieved is 3.74 flops/cycle.

5. (15 pts) ILP analysis

Consider the following computations:

1 double comp(double a, double b, double c, double d) {

2 double t0 = a * b;

3 double t1 = b * c;

4 double t2 = c * d;

5 double t3 = t0 + t1;

6 double t4 = t3 + t2;

7 double t5 = t2 / a;

8 return t4 + t5

9 }

Make the same assumptions as in Exercise 3, i.e., consider a Skylake processor, only one core with-
out using vector instructions (using flag -fno-tree-vectorize), and assume that no optimization is
performed that simplifies floating-point arithmetic (i.e. -ffast-math flag is not used).

(a) State the latency, throughput and port usage of the double-precision floating-point addition,
multiplication and division instructions.
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Solution: From uops.info:
Addition: p01, lat: 4, throughput: 0.5
Multiplication: p01, lat: 4, throughput: 0.5
Division: p0, lat: 13-15, throughput: 4

Determine hard lower bounds (not asymptotic) on the runtime (measured in cycles) for the following
cases. Base your analysis on the latency, throughput, and dependencies of the floating-point operations.
Be aware that the lower bound is also affected by the available ports offered for the computation (see
lecture slides). It may be useful to draw the dependency graph of the computation. Justify your
answers.

(b) Assume that the operations are issued in the order they are written, i.e., t1 is computed after
(or simultaneously with) t0, t2 after (or simultaneously with) t1 and t0, and so on. Determine
a hard lower bound on the runtime for comp.

Solution: At least 26 cycles, If we follow the order of instruction in the code, the div is scheduled
just before the last instruction.

(c) Now assume that operations can be issued out-of-order, meaning that t1 = b * c can be issued
before t0 = a * b. However, data dependencies must still be respected. Determine a hard lower
bound on the runtime for comp.

Solution: At least 22 cycles, The div can be issued after four cycles, after t2 is computed.
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Figure 3: Dependency graph for comp. It is the same for both cases.
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