
263-0007-00: Advanced Systems Lab
Assignment 2: 80 points

Due Date: Th, March 14th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2024/

Questions: fastcode@lists.inf.ethz.ch

Exercises:

1. Short project info (5 pts)
Go to the list of milestones for the projects. If you have not done that yet, please register your project
there. Read through the different points and fill in the first two together with your team. It is enough
if only one member of the team submits this in the project system. Consider the following about your
project while filling the points (be brief):

Point 1) An exact (as much as possible) but also short, problem specification.

For example for MMM, it could be like this:

Our goal is to implement matrix-matrix multiplication specified as follows:

Input: Two real matrices A,B of compatible size, A ∈ Rn×k and B ∈ Rk×m. We may impose
divisibility conditions on n, k,m depending on the actual implementation.
Output: The matrix product C = AB ∈ Rn×m.

Give the name of the algorithm you plan to consider for the problem and a precise reference (e.g.,
a link to a publication plus the page number) that explains it.

Point 2) A very short explanation of what kind of code already exists and in which language it is
written.

Solution: This will be different for each student.

2. Optimization Blockers (30 pts)

In this exercise, we consider the following short computation that is part of the supplied code in Code
Expert:

1 void slow_performance1(mat* x, mat* y, mat*z) {

2 double t1;

3 for (int i = 0; i < z->n1; i++) {

4 for (int j = 0; j < z->n2; j++) {

5 if (i % 2) {

6 t1 = mat_get(z,i,j)/cos(C*M_PI*j) + mat_get(x,i,j);

7 } else {

8 t1 = mat_get(z,i,j)/( sqrt(mat_get(y,i,0)) * sqrt(mat_get(x,0,j%6)))

9 + mat_get(y,i,j);

10 }

11 mat_set(z,i,j,t1*cos(mat_get(x,0,j%3)));

12 }

13 }

14 for (int i = 0; i < z->n1; i++) {

15 for (int j = 0; j < z->n2; j++) {

16 mat_activate(z, i, j, ALPHA);

17 }

18 }

19 }

Do the following:

• Read and understand the code. It enables you to register functions with the same signature,
which will be timed in a microbenchmark fashion.

• Create new functions where you perform optimizations to improve the runtime. For example,
strength reduction, inlining, removing function calls, and others.

• You may apply any optimization that produces the same result in exact arithmetic.
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• For every optimization you perform, create a new function in comp.cpp that has the same signature
as slowperformance1 and register it to the timing framework through the register function function
in comp.cpp. Let it run and, if it verifies, it will print the runtime in cycles.

• Implement in function maxperformance the implementation that achieves the best runtime. This
is the one that will be autograded by Code Expert.

• Note that the compiler usually transforms short implementations of the max operator that use the
ternary operator (also called conditional operator) into its respective max assembly instruction.
Example.

• For this task, the Code Expert system compiles the code using GCC 11.2.1 with the following flags:
-O3 -march=skylake -mno-fma -fno-tree-vectorize. Note that with these flags vectorization
and FMAs are disabled. It is also not allowed to use pragmas that modify the compilation
environment.

• It is not allowed to use vector intrinsics or FMAs to speedup your implementation.

• You can assume that the matrices are of size n× n with n = 100;

• You can assume 0 < xij < π/2, yij > 0, and zij > 0 for all 0 ≤ i, j ≤ n;

(a) Create a table with the runtime numbers of each new function that you created (include at
least 3). Briefly discuss the table explaining the optimizations applied in each step. Mention also
the maximum speedup that you achieved.

Solution:

Implementation Baseline Impl. 1 Impl. 2 Impl. 3 Impl. 4
Runtime (cycles) 873K 611K 291K 47.8K 27.8K

The table above reports runtime in cycles for five different implementations of the above code,
with optimizations turned on (-O3 -fno-tree-vectorize). The K stands for thousands. These
numbers were recorded on a Intel(R) Xeon(R) Silver 4210 @ 2.20GHz Cascade Lake with hyper-
threading disabled, and compiled with GCC 8.3.1.

Baseline is the original code. Implementation 2 removes calls to mat set and mat get by accessing
the arrays directly. Implementation 3 unrolls the outer loop once to avoid executing the branch
and precomputes constant values of the square root and the cosine. Implementation 4 unrolls the
inner loop six times to remove cosine operations. Finally, implementation 5 hoists computations
from the innermost loop, unrolls the cleanup code, and removes reduntant calls to abs and max.
We achieved a final speedup of 31.

(b) What is the performance in flops/cycle of your function maxperformance.

Solution: Implementation 4 performs 57 flops in the body of the inner-most loop and 57 flops
in the outer-most loop. The outer and inner loops perform 50 and 16 interations respectively.
Thus, W = 57 · 16 · 50 + 57 · 50 = 48.4K flops. The performance is therefore π = 48.4K

27.8K = 1.75
flops/cycle.

(c) Consider the theoretical peak performance for one core, without SIMD vector instructions and
without FMAs of the machine running the programs submitted to Code Expert. What percentage
of this theoretical peak performance did you achieve?

Solution: The theoretical peak performance is 2 flops/cycle with the given flags. Thus, we
achieved 87% of the peak performance.

3. Microbenchmarks(40 pts)

Your task is to write a program (without vector instructions, i.e., standard C) in Code Expert that
benchmarks the latency and reciprocal throughput of the addition and square root of doubles. In
addition, the latency and reciprocal throughput of the function f(a) =

√
a3. We provide the imple-

mentation of f(a) in foo.h. More specifically:

• Read and understand the code given in Code Expert.
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• Implement the functions provided in the skeleton in file microbenchmark.cpp:

void initialize_microbenchmark_data(microbenchmark_mode_t mode);

double microbenchmark_get_add_latency ();

double microbenchmark_get_add_rec_tp ();

double microbenchmark_get_sqt_latency ();

double microbenchmark_get_sqt_rec_tp ();

double microbenchmark_get_foo_latency ();

double microbenchmark_get_foo_rec_tp ();

• You can use the initialize microbenchmark data function for any kind of initialization that
you may need (e.g. for initializing the input values).

• Note that the latency and reciprocal throughput of floating-point square root can vary depend-
ing on their inputs. Thus, you are also required to find the minimum latency and reciprocal
throughput for square root and function f(a).

• It is not allowed to manually inline the function in foo.h into the implementation of your mi-
crobenchmarks.

• Make sure that your benchmarks yield stable measurements between runs.

• It is not allowed to use assembly nor intrinsics.

Additional information:

• Our Code Expert system already has Turbo Boost disabled. However, note that CPUs may
throttle their frequency below the nominal frequency. To ensure that the CPU is not throttled
down when running the experiments, one can warm up the CPU before timing them.

• For this task, our Code Expert system uses GCC 11.2.1 to compile the code with the following flags:
-O3 -fno-tree-vectorize -march=skylake -mno-fma -fno-math-errno. Note that with these
flags vectorization and FMAs are disabled. The -fno-math-errno flag is used to guarantee that
the sqrt function call is converted to its respective instruction.

Discussion:

(a) Do the latency and reciprocal throughput of double-precision floating point addition and square
root match what is in the Intel Optimization Manual? If no, explain why. (You can also check
Agner’s Table).

Solution: Yes, the manual reports a latency and reciprocal throughput for addsd of 4 and 0.5
respectively. For the square root (sqrtsd), the manual reports 18 and 6 cycles for latency and
gap respectively and Agner reports 15-16 and 4-6 cycles respectively. The measured latency and
gap in the microbenchmarks are 18 and 6 cycles for a random value and 13 and 4.5 cycles for a
trivial input value. These values are consistent with the Intel’s manual. Further, the numbers by
Agner are within the measured range.

(b) Based on the dependency, latency and reciprocal throughput information of the double-precision
floating point operations, is the measured latency and reciprocal throughput of function f(a) close
to what you would expect? Justify your answer.

Solution: Yes, the latency of f(a) is given by the sum of the latencies of its components since all
results are dependent. Therefore, we have latency of f(a) = 4(mul) + 4(mul) + 18(sqrt) = 26.
The bottleneck is the square root computation, meaning that the reciprocal throughput of f(a)
is equal to the reciprocal throughput of sqrtsd, i.e 6 cycles

(c) Assume that we now implement f(a) as

f2(a) = a ·
√
a,

will the latency and reciprocal throughput be different for this new implementation? Justify your
answer and state the expected latency and reciprocal throughput in case you think it will change.

Solution: Yes. Now the latency of f2(a) is the sum of the latencies of a mul and a sqrt. Therefore,
we have latency of f2(a) = 4(mul) + 18(sqrt) = 22. The reciprocal throughput will not change
since the bottleneck is still the sqrtsd.
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