
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Advanced Systems Lab
Spring 2023
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

Overview

Memory bound computations

Sparse linear algebra, OSKI

2

1

2

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Memory Bound Computation

Data movement, not computation, is the bottleneck

Typically: Computations with operational intensity I(n) = O(1)

3

performance

operational intensity

peak performance bound

memory bandwidth bound

memory
bound

compute
bound

Memory Bound Or Not? Depends On …

The computer

▪ Memory bandwidth

▪ Cache size

▪ Peak performance

The algorithm

▪ Dependencies

How it is implemented

▪ Good/bad locality

▪ SIMD or not

How the measurement is done

▪ Cold or warm cache

▪ In which cache data resides

▪ See next slide

4

3

4

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Example: BLAS 1, Warm Data & Code

5

0

10

20

30

40

50

60

70

80

90

100

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

z = x + y on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

L1
cache

L2
cache

L3
cache

2 doubles/cycle

1 double/cycle

1/2 double/cycle

sum of vector lengths (working set)

Percentage peak performance (peak = 1 add/cycle)

Guess the
read bandwidth
from L1 cache

Guess L2 cache size

Sparse Linear Algebra

Sparse matrix-vector multiplication (MVM)

Sparsity/Bebop/OSKI

References:

▪ Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization
Framework for Sparse Matrix Kernels, Int’l Journal of High Performance
Comp. App., 18(1), pp. 135-158, 2004

▪ Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.;
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply,
pp. 26, Supercomputing, 2002

▪ Sparsity/Bebop website

6

5

6

http://bebop.cs.berkeley.edu/

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Sparse Linear Algebra

Very different characteristics from dense linear algebra (LAPACK etc.)

Applications:

▪ finite element methods

▪ PDE solving

▪ physical/chemical simulation
(e.g., fluid dynamics)

▪ linear programming

▪ scheduling

▪ signal processing (e.g., filters)

▪ …

Core building block: Sparse MVM

7
Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/claus/
projects/unfitted-meshes_en.html

Sparse MVM (SMVM)

y = y + Ax, A sparse but known (below A is square)

Typically executed many times for fixed A

What is reused (possible temporal locality)?

Upper bound on operational intensity?
8

●= +

y y xA

K nonzero entries

n x n

7

8

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Storage of Sparse Matrices

Standard storage is obviously inefficient: Many zeros are stored

▪ Unnecessary operations

▪ Unnecessary data movement

▪ Bad operational intensity

Several sparse storage formats are available

Popular for performance: Compressed sparse row (CSR) format

9

CSR

Assumptions:

▪ A is m x n

▪ K nonzero entries

Storage:

▪ K doubles + (K+m+1) ints = Θ(max(K, m))

▪ Typically: Θ(K)

10

b c c

a

b b

c

A as matrix

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

length K

length K

length m+1

9

10

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Sparse MVM Using CSR

11

void smvm(int m, const double* values, const int* col_idx,
const int* row_start, double* x, double* y)

{
int i, j;
double d;

/* loop over m rows */
for (i = 0; i < m; i++) {
d = y[i]; /* scalar replacement since reused */

/* loop over non-zero elements in row i */
for (j = row_start[i]; j < row_start[i+1]; j++)
d += values[j] * x[col_idx[j]];

y[i] = d;
}

}

y = y + Ax

CSR + sparse MVM: Advantages?

CSR

Advantages:

▪ Only nonzero values are stored

▪ All three arrays for A (values, col_idx, row_start) accessed consecutively in
MVM (good spatial locality)

▪ Good temporal locality with respect to y

Disadvantages:

▪ Insertion into A is costly

▪ Poor temporal locality with respect to x

12

11

12

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Impact of Matrix Sparsity on Performance

Adressing overhead (dense MVM vs. dense MVM in CSR):

▪ ~ 2x slower (example only)

Fundamental difference between MVM and sparse MVM (SMVM):

▪ Sparse MVM is input dependent (sparsity pattern of A)

▪ Changing the order of computation (e.g., when blocking) requires changing
the data structure (CSR)

13

Bebop/Sparsity: SMVM Optimizations

Idea: Blocking for registers

Reason: Reuse x to reduce memory traffic

Execution: Block SMVM y = y + Ax into micro MVMs

▪ Block size r x c becomes a parameter

▪ Consequence: Change A from CSR to r x c block-CSR (BCSR)

BCSR: Next slide

14

13

14

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

BCSR (Blocks of Size r x c)

Assumptions:

▪ A is m x n

▪ Block size r x c

▪ Kr,c nonzero blocks

Storage:

▪ rcKr,c doubles + (Kr,c+m/r+1) ints = Θ(rcKr,c)

▪ rcKr,c ≥ K
15

b c c

a

b b

c

A as matrix (r = c = 2)

b c 0 a 0 c 0 0 b b c 0

0 1 1

0 2 3

b_values

b_col_idx

b_row_start

A in BCSR (r = c = 2):

length rcKr,c

length Kr,c

length m/r+1

Sparse MVM Using 2 x 2 BCSR

16

void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,
const double *b_values, double *x, double *y)

{
int i, j;
double d0, d1, c0, c1;

/* loop over bm block rows */
for (i = 0; i < bm; i++) {

d0 = y[2*i]; /* scalar replacement since reused */
d1 = y[2*i+1];

/* dense micro MVM */
for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) {

c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */
c1 = x[2*b_col_idx[j]+1];
d0 += b_values[0] * c0;
d1 += b_values[2] * c0;
d0 += b_values[1] * c1;
d1 += b_values[3] * c1;

}
y[2*i] = d0;
y[2*i+1] = d1;

}
}

15

16

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

BCSR

Advantages:

▪ Temporal locality with respect to x and y

▪ Reduced storage for indexes

Disadvantages:

▪ Storage for values of A increased (zeros added)

▪ Computational overhead (also due to zeros)

17

* =

Which Block Size (r x c) is Optimal?

18source: R. Vuduc, Georgia Tech

Example:

 20,000 x 20,000 matrix
(only part shown)

 Perfect 8 x 8 block structure

 No overhead when blocked
r x c, with r, c divides 8

17

18

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Speed-up Through r x c Blocking

19Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

• machine dependent
• hard to predict

How to Find the Best Blocking for given A?

Best block size is hard to predict (see previous slide)

Solution 1: Searching over all r x c within a range, e.g., 1 ≤ r,c ≤ 12

▪ Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs

▪ So total cost = 1440 SMVMs

▪ Too expensive

Solution 2: Model

▪ Estimate the gain through blocking

▪ Estimate the loss through blocking

▪ Pick best ratio

20

19

20

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Model: Example

Gain by blocking (dense MVM) Overhead (average) by blocking

21

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

Model: Doing that for all r and c and picking best

* =

Model

Goal: find best r x c for y = y + Ax

Gain through r x c blocking (estimation):

dependent on machine, independent of sparse matrix

Overhead through r x c blocking (estimation)
scan part of matrix A

independent of machine, dependent on sparse matrix

Expected gain: Gr,c/Or,c

22

dense MVM performance in r x c BCSR
dense MVM performance in CSR

Gr,c =

number of matrix values in r x c BCSR
number of matrix values in CSR

Or,c =

21

22

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Gain from Blocking (Dense Matrix in BCSR)

23

• machine dependent
• hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

ro
w

 b
lo

ck
 s

iz
e

r

ro
w

 b
lo

ck
 s

iz
e

r

column block size c column block size c

Pentium III Itanium 2

Typical Result (assumes cold cache)

24

BCSR model

BCSR exhaustive
search

Upper bound:
only compulsory
misses

CSR

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Lower bound:
every access
yields a miss

23

24

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Principles in Bebop/Sparsity Optimization

Optimization for memory hierarchy = increasing locality
▪ Blocking for registers (micro-MVMs)

▪ Requires change of data structure for A

▪ Optimizations are input dependent (on sparse structure of A)

Fast basic blocks for small sizes (micro-MVM):
▪ Unrolling + scalar replacement

Search for the fastest over a relevant set of algorithm/implementation
alternatives (parameters r, c)

▪ Use of performance model (versus measuring runtime) to evaluate expected gain

25

Different from ATLAS

SMVM: Other Ideas

Value compression

Index compression

Pattern-based compression

Multiple inputs

26

25

26

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Value Compression

Situation: Matrix A contains many duplicate values

Idea: Store only unique ones plus index information

27

b c c

a

b b

c

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

1 2 2 0 1 1 2

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR-VI:

a b c

Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaded
Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008

Index Compression

Situation: Matrix A contains sequences of nonzero entries

Idea: Use special byte code to jointly compress col_idx and row_start

28

row_start

col_idx

byte code

Coding Decoding

Source: Willcock and Lumsdaine, Accelerating Sparse Matrix Computations
via Data Compression, pp. 307-316, ICS 2006

27

28

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Pattern-Based Compression

Situation: After blocking A, many blocks have the same nonzero pattern

Idea: Use special BCSR format to avoid storing zeros;
needs specialized micro-MVM kernel for each pattern

29

b c c

a

b b

c

A as matrix

b c 0 a 0 c 0 0 b b c 0

Values in 2 x 2 BCSR

b c a c b b c

Values in 2 x 2 PBR

+ bit string: 1101 0100 1110

Source: Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation
for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009

Multiple Inputs

Situation: Compute SMVM y = y + Ax for several independent x

Experiments: up to 9x speedup for 9 vectors

30Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

= *

= *

enables blocking across
MVMs like MMM

29

30

