Advanced Systems Lab

Spring 2023

Lecture: Dense linear algebra, LAPACK/BLAS, ATLAS, fast MMM

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1

Overview

Linear algebra software: the path to fast libraries, LAPACK and BLAS

Blocking (BLAS 3): key to performance

Fast MMM

- Algorithms
- ATLAS
- Model-based ATLAS

2

Linear Algebra Algorithms: Examples

Solving systems of linear equations

Eigenvalue problems

Singular value decomposition

LU/Cholesky/QR/... decompositions

... and many others

Make up much of the numerical computation across disciplines (sciences, computer science, data science and machine learning, engineering)

Efficient software is extremely relevant

3

3

The Path to Fast Libraries

EISPACK and LINPACK (early 1970s)

- Focus on dense matrices
- Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart
- LINPACK still the name of the benchmark for the <u>TOP500</u> (<u>Wiki</u>) list of most powerful supercomputers

Matlab: Invented in the late 1970s by Cleve Moler

Commercialized (MathWorks) in 1984

Motivation: Make LINPACK, EISPACK easy to use

Matlab uses linear algebra libraries but can only call it *if you operate with matrices and vectors and do not write your own loops*

- A*B (calls MMM routine)
- A\b (calls linear system solver)

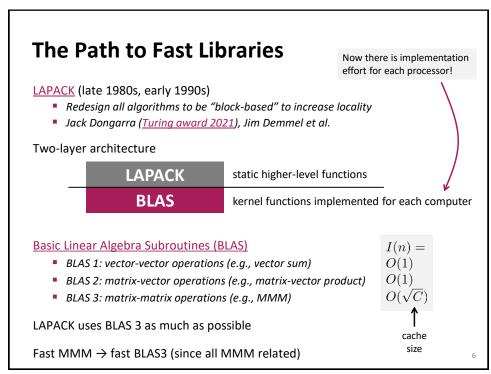
The Path to Fast Libraries

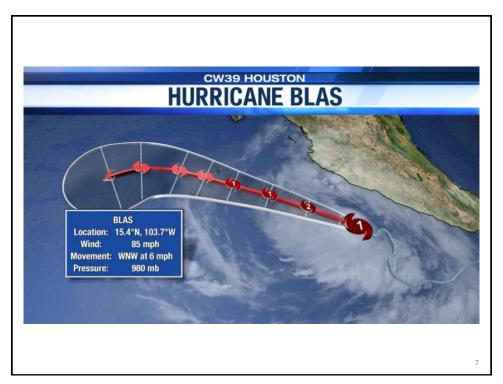
EISPACK/LINPACK Problem:

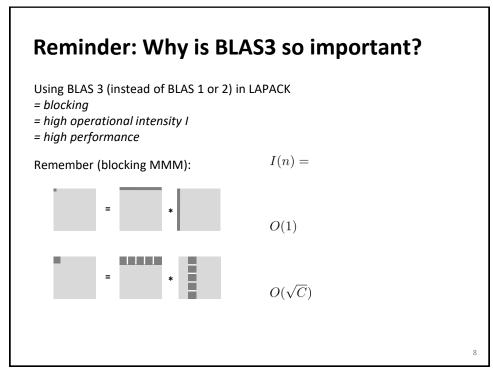
- Implementation vector-based = low operational intensity (e.g., MMM as double loop over scalar products of vectors)
- Low performance on computers with deep memory hierarchy (became apparent in the 80s)

5

5







Small Detour: MMM Complexity?

Usually computed as C = AB + C

Cost as computed before

- n^3 multiplications + n^3 additions = $2n^3$ floating point operations
- $= O(n^3)$ runtime

Blocking

- Increases locality
- Does not decrease cost

Can we reduce the op count?

9

9

Strassen's Algorithm

Strassen, V. "Gaussian Elimination is Not Optimal," *Numerische Mathematik* 13, 354-356, 1969

Until then, MMM was thought to be $\Theta(n^3)$

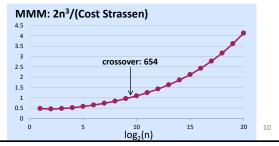
Recurrence for flops:

- $T(n) = 7T(n/2) + 9/2 n^2 = 7n^{\log_2(7)} 6n^2 = O(n^{2.808})$
- Later improved: $9/2 \rightarrow 15/4$

Fewer ops from n = 654, but ...

- Structure more complex → runtime crossover much later
- Numerical stability inferior

Can we reduce more?



MMM Complexity: What is known

Coppersmith, D. and Winograd, S.: "Matrix Multiplication via Arithmetic Programming," *J. Symb. Comput.* 9, 251-280, 1990

Makes MMM O(n^{2.376...})

Current best (Oct. 2022): O(n^{2.37188...}) Previous best: O(n^{2.3728596...})

But unpractical (a galactic algorithm)

MMM is obviously $\Omega(n^2)$

It could well be close to $\Theta(n^2)$

Practically all code out there uses 2n³ flops

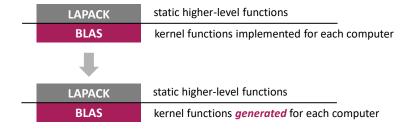
Compare this to matrix-vector multiplication:

Known to be Θ(n²) (Winograd), i.e., boring

11

11

The Path to Fast Libraries (continued)

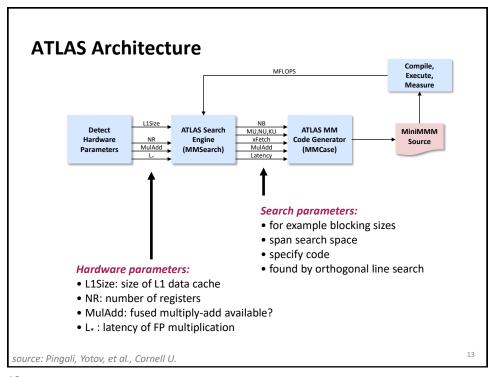


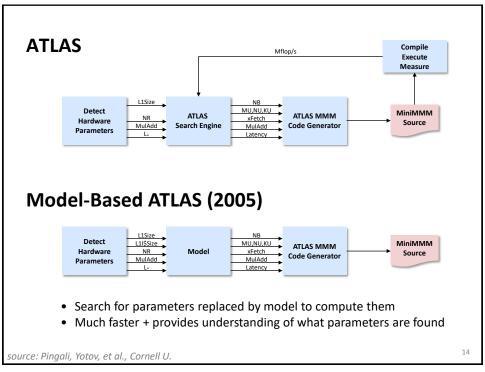
ATLAS (late 1990s, inspired by PhiPAC): BLAS generator

Enumerates many implementation variants (blocking etc.) and picks the fastest (example): advent of so-called autotuning

Enables automatic performance porting

Most important: BLAS3 MMM generator





Optimizing MMM

References:

R. Clint Whaley, Antoine Petitet and Jack Dongarra, <u>Automated Empirical</u>
<u>Optimization of Software and the ATLAS project</u>, Parallel Computing, 27(1-2):3-35, 2001

K. Goto and R. van de Geijn, <u>Anatomy of high-performance matrix</u> <u>multiplication</u>, ACM Transactions on mathematical software (TOMS), 34(23), 2008

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings of the IEEE, 93(2), pp. 358–386, 2005.

Our presentation is based on this paper

15

15

0: Starting Point

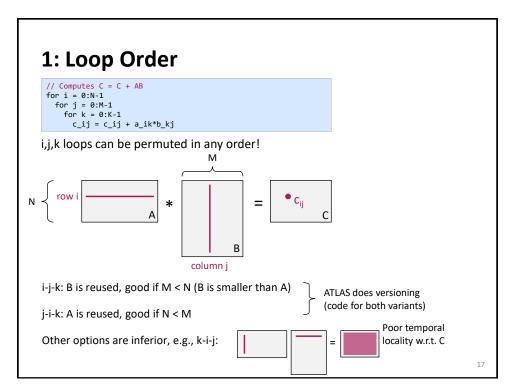
Standard triple loop

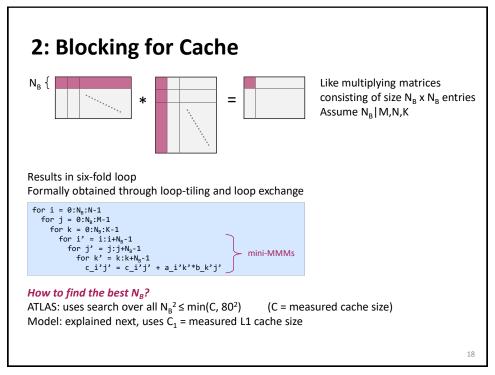
// Computes c = c + abfor i = 0:N-1for j = 0:M-1for k = 0:K-1 $c_i j = c_i j + a_i k * b_k k j$ NxK $k \times M$ row i $k \times M$ $k \times M$

column j

Most important in practice (based on usage in LAPACK)

- Two out of N, M, K are small
- One out of N, M, K is small
- None is small (e.g., square matrices)



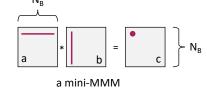


2: Blocking for Cache

a) Idea: Working set has to fit into cache Easy estimate: |working set| = 3 N_B²

Model: $3 N_B^2 \le C_1$

b) Closer analysis of working set:



c) Take into account cache block size B₁:

$$\left\lceil \frac{N_B^2}{B_1} \right\rceil + \left\lceil \frac{N_B}{B_1} \right\rceil + 1 \le \frac{C_1}{B_1}$$

19

19

2: Blocking for Cache

d) Take into account LRU replacement Build a history of accessed elements

$$a_{0,0} \, b_{0,N_B-1} \, a_{0,1} b_{1,N_B-1} \dots a_{0,N_B-1} \, b_{N_B-1,N_B-1} \, c_{0,N_B-1} \quad \text{(j=N_B-1)}$$

Corresponding history:

$$\begin{array}{c} b_{0,0} \ b_{1,0} \dots b_{N_B-1,0} \ c_{0,0} \\ b_{0,1} \ b_{1,1} \dots b_{N_B-1,1} \ c_{0,1} \\ & \dots \\ a_{0,0} \ b_{0,N_B-1} \ a_{0,1} b_{1,N_B-1} \dots a_{0,N_B-1} \ b_{N_B-1,N_B-1} \ c_{0,N_B-1} \end{array}$$

Observations:

- All of b has to fit for next iteration (i = 1)
- When i = 1, row 1 of a will not cleanly replace row 0 of a
- When i = 1, elements of c will not cleanly replace previous elements of c

2: Blocking for Cache

d) Take into account LRU replacement

History (i = 0):

$$\begin{array}{l} b_{0,0}\,b_{1,0}\,\ldots\,b_{N_B-1,0}\,c_{0,0} \\ b_{0,1}\,b_{1,1}\,\ldots\,b_{N_B-1,1}\,c_{0,1} \\ & \ldots \\ a_{0,0}\,b_{0,N_B-1}\,a_{0,1}b_{1,N_B-1}\,\ldots\,a_{0,N_B-1}\,b_{N_B-1,N_B-1}\,c_{0,N_B-1} \end{array}$$

Observations:

- All of b has to fit for next iteration (i = 1)
- When i = 1, row 1 of a will not cleanly replace row 0 of a
- When i = 1, elements of c will not cleanly replace previous elements of c

 $\left\lceil \frac{N_B^2}{B_1} \right\rceil + 3 \left\lceil \frac{N_B}{B_1} \right\rceil + 1 \le \frac{C_1}{B_1}$

This has to fit:

- Entire b
- 2 rows of a
- 1 row of c
- 1 element of c

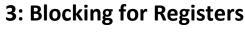
21

21

2: Blocking for Cache

e) Take into account blocking for registers (next optimization)

$$\left\lceil \frac{N_B^2}{B_1} \right\rceil + 3 \left\lceil \frac{N_B M_U}{B_1} \right\rceil + \left\lceil \frac{M_U N_U}{B_1} \right\rceil \leq \frac{C_1}{B_1}$$



Blocking mini-MMMs into micro-MMMs for registers revisits the question of loop order:

For fixed i, j: 2n operations

- n independent mults
- n dependent adds

For fixed k: 2n² operations

- n² independent mults
- n² independent adds

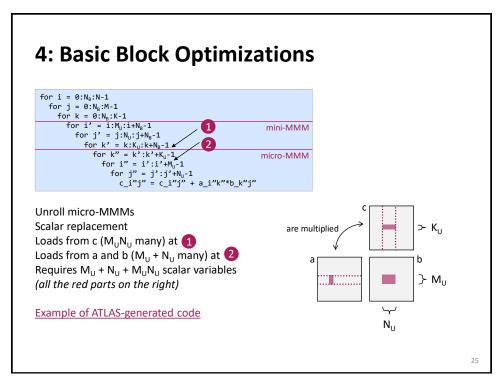
Better ILP (but larger working set)

Result: k-i-j loop order for micro-MMMs

23

23

3: Blocking for Registers for $i = 0:N_B:N-1$ for $j = 0:N_B:M-1$ $\begin{array}{ll} \text{or } j = 0:N_B:N-1 \\ \text{for } k = 0:N_B:K-1 \\ \text{for } i' = i:M_I:i+N_B-1 \\ \text{for } j' = j:N_I:j+N_B-1 \\ \text{for } k' = k:K_I:k+N_B-1 \\ \text{for } k'' = k':k':k'+K_U-1 \\ \text{for } i'' = i':i'+M_U-1 \\ \text{colored} i'' = j':j'+N_U-1 \\ \text{colored} i'' = colored i'' + aoi''k''*b_k''j'' \end{array}$ mini-MMM micro-MMM mini-MMM How to find the best M_{U} , N_{U} , K_{U} ? micro-MMM ATLAS: uses search with bound $M_U + N_U + M_U N_U \le N_R$ number of are multiplied size of working set in X (all the red parts on the left) $\rightarrow M_{U}$ Model: Use largest M_U, N_U that satisfy this equation and $M_U \approx N_U$ 24



5: Other optimizations (see paper)

Skewing: separate dependent add-mults for better ILP

Software pipelining: move load from one iteration to previous iteration to hide load latency (a form of prefetching)

Buffering to avoid TLB misses (later)

Remaining Details

Register renaming and the refined model for x86

TLB-related optimizations

27

27

Dependencies

Read-after-write (RAW) or true dependency

$$egin{array}{lll} m{W} & \mathbf{r}_1 = \mathbf{r}_3 + \mathbf{r}_4 & \textit{nothing can be done} \\ m{R} & \mathbf{r}_2 = 2\mathbf{r}_1 & \textit{no ILP} \end{array}$$

Write after read (WAR) or antidependency

Write after write (WAW) or output dependency

Resolving WAR by Renaming

```
R r_1 = r_2 + r_3 dependency only by r_1 = r_2 + r_3 r_2 = r_4 + r_5 now ILP
```

Renaming can be done at three levels:

1. C source code (= you rename): use SSA style (next slide)

29

30

29

Scalar Replacement + SSA

How to avoid WAR and WAW in your basic block source code

Solution: Single static assignment (SSA) code:

Each variable is assigned exactly once

```
sofe (t287 - t285);
s267 = (t282 + t286);
s268 = (t282 - t286);
s269 = (t284 + t288);
s270 = (t284 - t288);
s271 = (0.5*(t271 + t280));
s272 = (0.5*(t271 + t280));
s273 = (0.5*(t271 + t280));
s274 = (0.5*(s265 - s266));
s274 = (0.5*(s265 - s266));
t289 = ((5.4*s272) + (5.4*s273));
t290 = ((5.4*s272) + (12.6*s273));
t291 = ((1.8*s271) + (1.2*s274));
t292 = ((1.2*s271) + (2.4*s274));
a122 = (1.8*(t269 - t278));
a123 = (1.8*s267);
a124 = (1.8*s269);
t293 = ((a122 - a123) + a124);
a125 = (1.8*(t267 - t276));
t294 = (a125 + a123 + a124);
t295 = ((a125 - a122) + (3.6*s267));
t296 = (a122 + a125 + (3.6*s269));
```

Resolving WAR by Renaming

$$R$$
 $r_1 = r_2 + r_3$
 W $r_2 = r_4 + r_5$

dependency only by $r_1 = r_2 + r_3$ $name \rightarrow rename$ $r_1 = r_2 + r_3$

$$r_1 = r_2 + r_3$$

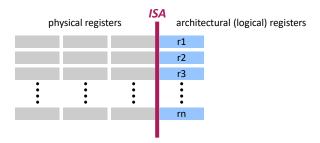
 $r_1 = r_4 + r_5$

Renaming can be done at three levels:

- 1. C source code (= you rename)
- 2. Compiler: Uses a different register upon register allocation, $r = r_6$
- 3. Hardware (if supported): dynamic register renaming
 - Requires a separation of architectural and physical registers
 - Requires more physical than architectural registers

31

Register Renaming



Each logical register has several associated physical registers

Hardware manages mapping architectural → physical registers

Hence: more instances of each r_i can be created

Used in superscalar architectures (e.g., Intel Core) to increase ILP by dynamically resolving WAR/WAW dependencies

Micro-MMM Standard Model

this parameter I did not $M_U^*N_U + M_U + N_U \le N_R - ceil((L_x+1)/2)$ core $(N_R = 16)$: $M_U = 2$, $N_U = 3$

reuse in a, b, c

Code sketch $(K_{IJ} = 1)$

```
rc1 = c[0,0], ..., rc6 = c[1,2] // 6 registers
loop over k {
  load a // 2 registers
  load b // 3 registers
  compute // 6 independent mults, 6 independent adds, reuse a and b
}
c[0,0] = rc1, ..., c[1,2] = rc6
```

But on x86 that's not what ATLAS' search found

33

33

Extended Model (x86)

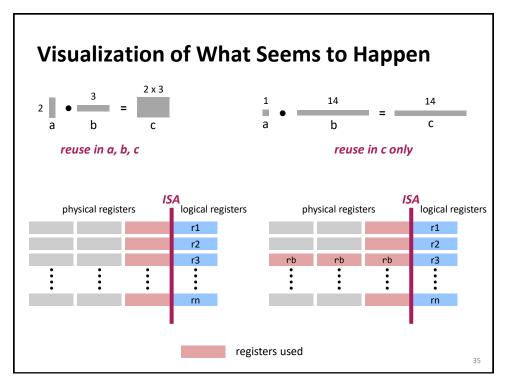
Set $M_U = 1$, $N_U = N_R - 2 = 14$

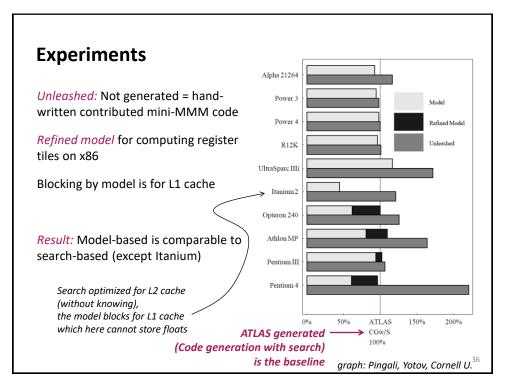
reuse in c only

Code sketch $(K_U = 1)$

Summary:

- no reuse in a and b
- $\mbox{+}\mbox{ larger tile}$ size available for c since for b only one register is used





Remaining Details

Register renaming and the refined model for x86

TLB-related optimizations

3/

37

Virtual Memory System (Core Family)

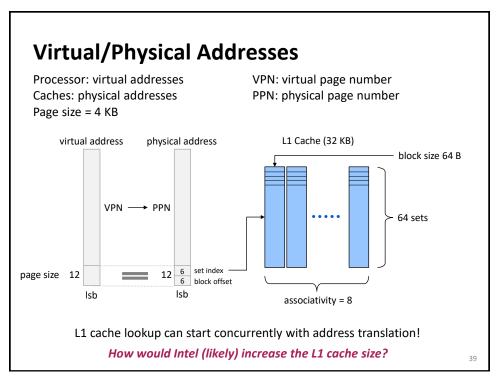
The processor works with virtual addresses

All caches work with *physical addresses*

Both address spaces are organized in pages

Page size: 4 KB (can be changed to 2 MB and even 1 GB in OS settings)

Address translation: virtual address \rightarrow physical address



Address Translation

Uses a cache called translation lookaside buffer (TLB)

Skylake:

Level 1 ITLB (instructions): 128 entries

DTLB (data): 64 entries

Level 2 Shared (STLB): 1536 entries

Miss Penalties:

DTLB hit: no penalty

DTLB miss, STLB hit: few cycles penalty

STLB miss: can be very expensive

Impact on Performance

Repeatedly accessing a working set spread over too many pages yields TLB misses and can result in a significant slowdown.

Example Skylake: STLB = 1536

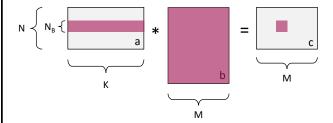
A computation that repeatedly accesses a working set of 2048 doubles spread over 2048 pages will cause STLB misses.

How much space will this working set occupy in cache (assume no conflicts)? 2048 * 64 B = 128 KB (fits into L2 cache)

41

41

Example MMM



Working set at highest level

We are looking for parts in the working set that are spread out in memory:

- Block row of a: contiguous
- All of b: contiguous
- Block of c: if M > 512, then spread over N_B pages

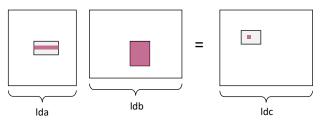
Typically, N_B is in the 10s, so no problem

Example MMM, contd.

Interface BLAS function: dgemm(a, b, c, N, K, M, 1da, 1db, 1dc)

matrices sizes leading dimensions

Leading dimensions: Enable use on matrices inside matrices



Assume Ida, Idb, Idc > 512:

- Block row of a: spread over $\geq N_B$ pages
- All of b: spread over ≥ K pages
- Block of c: Spread over ≥ N_B pages

So copying to contiguous memory may pay off

43

43

Example MMM, contd.

Resulting code (sketch):

Fast MMM: Principles

Optimization for memory hierarchy

- Blocking for cache
- Blocking for registers

Basic block optimizations

- Loop order for ILP
- Unrolling + scalar replacement
- Scheduling & software pipelining

Optimizations for virtual memory

Buffering (copying spread-out data into contiguous memory)

Autotuning

- Search over parameters (ATLAS)
- Model to estimate parameters (Model-based ATLAS)

All high performance MMM libraries do some of these (but possibly in slightly different ways)

45

45

Path to Fast Libraries

LAPACK static higher level functions

BLAS kernel functions *generated* for each computer

The advent of SIMD vector instructions (SSE, 1999) made ATLAS obsolete

The advent of multicore systems (ca. 2005) required a redesign of LAPACK (just parallelizing BLAS is suboptimal)

Recently, BLAS interface needs to be extended to handle higher-order tensor operations (used in machine learning)

Automatic generation of blocked algorithms, alternatives to LAPACK (FLAME)

Small scale linear algebra requires quite different optimizations (see program generator SLinGen/LGen)

Lessons Learned

Implementing even a relatively simple function with optimal performance can be highly nontrivial

Autotuning can find solutions that a human would not think of implementing

Understanding which choices lead to the fastest code can be very difficult

MMM is a great case study, touches on many performance-relevant issues

Most domains are not studied as carefully as dense linear algebra

47