
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Instructors: Markus Püschel, Ce Zhang

TAs: Joao Rivera, several more

Advanced Systems Lab
Spring 2023, Lecture 1

Picture: www.tapety-na-pulpit.org

2
slide by Bertrand Meyer

1

2

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Today

Motivation for this course

Organization of this course

3

Embedded Computing

Audio/image/video processing, …

Scientific Computing

Physics/biology simulations, …

4

Numerical Computing

Unlimited need for performance

Large set of applications, but …

Relatively small set of critical components
(10s to 100s)

▪ Matrix multiplication

▪ Discrete Fourier transform (DFT)

▪ Viterbi decoder

▪ Shortest path computation

▪ Stencils

▪ Solving linear systems

▪ ….

Signal processing, communication, control, …

Consumer Computing

Cloud Computing

Data analytics, machine learning, …

3

4

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Scientific Computing (Clusters/Supercomputers)

5

data.giss.nasa.gov www.foresight.org

Climate modelling Finance simulations Molecular dynamics

Other application areas:
▪ Fluid dynamics
▪ Chemistry
▪ Biology
▪ Medicine
▪ Geophysics

Methods:
▪ Mostly linear algebra
▪ PDE solving
▪ Linear system solving
▪ Finite element methods
▪ Others

Cloud Computing (Server Farms)

6

Application areas:
▪ Data analytics
▪ Machine learning
▪ Database operations
▪ Others

Methods:
▪ Linear algebra
▪ Convolutions
▪ Tensor operations
▪ Others

5

6

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Consumer Computing (Desktop, Phone, …)

7

Photo/video processing Audio decoding Security

Image compression

Methods:
▪ Linear algebra
▪ Transforms
▪ Filters
▪ Others

Original JPEG JPEG2000

Embedded Computing (Low-Power Processors)

8

Sensor networks Cars Robotics

Applications:
▪ Signal processing
▪ Control
▪ Communication
▪ Inference
▪ Others

www.dei.unipd.it www.microway.com.auwww.ece.drexel.edu

Methods:
▪ Linear algebra
▪ Transforms
▪ Filters
▪ Coding
▪ Others

7

8

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Classes of Performance-Critical Functions

Transforms

Filters/correlation/convolution/stencils/interpolators

Dense linear algebra functions

Sparse linear algebra functions

Tensor operations

Coder/decoders

Graph algorithms

… several others

9

See also the 13 dwarfs/motifs in
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

How Hard Is It to Get Fast Code?

10

Algorithms

Software

Compilers

Microarchitecture

“compute Fourier transform”

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

e.g., a C function

How well does this work?

optimized executable

high runtime performance

9

10

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

The Problem: Example 1

11

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Runtime [s]

Straightforward
“good” C code (1 KB)

or ?

The Problem: Example 1

12

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

11

12

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

or ?

The Problem: Example 1

13

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

14

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

13

14

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

The Problem: Example 1

Vendor compiler, best flags

Roughly same operations count
15

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

Fastest code (1 MB)

12x

35x

0

5

10

15

20

25

30

35

40

45

50

0 1'000 2'000 3'000 4'000 5'000 6'000 7'000 8'000 9'000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

The Problem: Example 2

Vendor compiler, best flags

Exact same operations count (2n3)
16

160x

Triple loop (< 1KB)

Fastest code (100 KB)

15

16

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Model predictive control

Eigenvalues

LU factorization

Optimal binary search organization

Image color conversions

Image geometry transformations

Enclosing ball of points

Metropolis algorithm, Monte Carlo

Seam carving

SURF feature detection

Submodular function optimization

Graph cuts, Edmond-Karps Algorithm

Gaussian filter

Black Scholes option pricing

Disparity map refinement

Singular-value decomposition

Mean shift algorithm for segmentation

Stencil computations

Displacement based algorithms

Motion estimation

Multiresolution classifier

Kalman filter

Object detection

IIR filters

Arithmetic for large numbers

Optimal binary search organization

Software defined radio

Shortest path problem

Feature set for biomedical imaging

Biometrics identification 17

“Theorem:”
Let f be a mathematical function to be implemented on a
state-of-the-art processor. Then

Performance of optimal implementation of f

Performance of straightforward implementation of f

≈
10–100

18

17

18

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Evolutions of Processors (Intel)

19
Source: Wikipedia/Intel/PCGuide

free speedup

~3 GHz

Pentium Pro

Pentium II

Pentium III

Pentium 4 Core Nehalem

Sandy Bridge

Haswell

Pentium

Evolutions of Processors (Intel)

20

free speedup

parallelism:
work required

~360 Gflop/s

~3 GHz
Pentium 4 Core Nehalem

Sandy Bridge

Haswell

2 2 4 4 4 8 cores

Cores: 8x
Vector units: 8x

Source: Wikipedia/Intel/PCGuide

Pentium

Pentium Pro

Pentium II

Pentium III

19

20

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Evolutions of Processors (Intel)

21

memory bandwidth (normalized)

Source: Wikipedia/Intel/PCGuide

And there is Processor Variety …

22

arm.com nvidia.com

GPUs

FPGA accelerators

nallatech.com

Domain-specific (here: Tile)

mellanox.com

21

22

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

...
t282 = _mm_addsub_ps(t268, U247);
t283 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_shuffle_ps(t275, t275, _MM_SHUFFLE(2, 3, 0, 1))));
t284 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_sub_ps(_mm_setzero_ps(), ………)
s217 = _mm_addsub_ps(t270, U247);
s218 = _mm_addsub_ps(_mm_mul_ps(t277, _mm_set1_ps((-0.70710678118654757))), ………)
t285 = _mm_add_ps(s217, s218);
t286 = _mm_sub_ps(s217, s218);
s219 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(1, 0, 1, 0));
s220 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(3, 2, 3, 2));
s221 = _mm_shuffle_ps(t283, t285, _MM_SHUFFLE(1, 0, 1, 0));
...

Compiler doesn’t do the job

Doing by hand: nightmare
23

Vector instructions: 3x

Multiple threads: 3x

Memory hierarchy: 5x

0

5

10

15

20

25

30

35

40

45

50

0 1'000 2'000 3'000 4'000 5'000 6'000 7'000 8'000 9'000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

24

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

Compiler doesn’t do the job

Doing by hand: nightmare

MMM kernel function

23

24

ATL_dmm4x2x4_avx.c

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Summary and Facts I

Implementations with same operations count can have vastly different
performance (could be a 100x)

▪ A cache miss can be 10x more expensive than an operation

▪ Code style limits compiler

▪ Vector instructions

▪ Multiple cores = processors on one die

Minimizing operations count ≠ maximizing performance

End of free speed-up for legacy code

▪ Future performance gains through increasing parallelism

25

Summary and Facts II

It is very difficult to write the fastest code
▪ Tuning for memory hierarchy

▪ Vector instructions

▪ Code style (understand compiler limitations)

▪ Efficient parallelization (multiple threads)

▪ Requires expert knowledge in algorithms, coding, and architecture

Fast code can be large and hard to maintain
▪ Can violate “good” software engineering practices

Compilers often can’t do the job
▪ Often intricate changes in the algorithm required

▪ Optimization blockers

▪ No good way of evaluating choices

Highest performance is in general non-portable

26

25

26

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

27

Performance/Productivity
Challenge

28

27

28

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Current Solution

Legions of programmers implement and optimize the same
functionality for every platform and whenever a new platform
comes out

29

Better Solution: Autotuning

Automate (parts of) the implementation or optimization

Research efforts
▪ Linear algebra: Phipac/ATLAS, LAPACK,

Sparsity/Bebop/OSKI, Flame

▪ Tensor computations

▪ PDE/finite elements: Fenics

▪ Adaptive sorting

▪ Fourier transform: FFTW

▪ Linear transforms: Spiral

▪ …many more since then

▪ New compiler techniques

30

Proceedings of the IEEE special issue, Feb. 2005

Promising area but much more work needed …

29

30

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

0

5

10

15

20

25

30

35

40

45

50

0 1'000 2'000 3'000 4'000 5'000 6'000 7'000 8'000 9'000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

This Course

31

This Course: Goals

Obtain a deeper understanding of performance

Learn how to write fast code for numerical problems

▪ Focus: Single core

▪ Principles studied using important examples

▪ Applied in homeworks and a research project

Learn about autotuning 32

Algorithms

Fast implementations of
numerical problems

Software

Compilers

Computer architecture

31

32

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Today

Motivation for this course

Organization of this course

33

Course: Times and Places

Lectures:

▪ Monday 10-12, HG F3

▪ Thursday 9-10, HG F3

Extra sessions: Only used when announced on website

▪ Wednesday 14-16, HG E5

Course deregistration rule:

▪ Deadline: Second Friday in March

▪ After that: drop out = fail

34

33

34

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Course Website Has all Info

35

https://acl.inf.ethz.ch/teaching/fastcode/

etc.

Team and Communication
Lecturers: Markus Püschel and Ce Zhang

Head TA: Joao Rivera Other TAs:

Course website has ALL information

Questions:

▪ Office hours (during HW period): see website

▪ fastcode@lists.inf.ethz.ch: goes to TAs and lecturers

Finding project partner: fastcode-forum@lists.inf.ethz.ch

36

Yann Girsberger
Mikhail Khalilov
Tommaso Pegolotti
Theodoros Theodoridis

35

36

https://acl.inf.ethz.ch/teaching/fastcode/
https://acl.inf.ethz.ch/teaching/fastcode/
mailto:fastcode@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Prerequisites and Organization

Requirements

▪ solid C programming skills

▪ matrix algebra

▪ Master student or above

Grading

▪ 40% research project

▪ 30% midterm exam

▪ 30% homework

Wednesday slot

▪ Gives you scheduled time to work together

▪ Occasionally we will move lecture there (will communicate if so)

▪ By default will not take place

37

Research Project: Overview
Teams of 4

Yes: 4

Topic: Very fast implementation of a numerical problem

Until March 10th:

▪ find a project team

▪ suggest to me a problem or pick from list (on course website)
Tip: pick something from your research or that you are interested in

▪ Register in our project system + you get a git repo for project

Show “milestones” during semester: One-on-one meetings

Give short presentation end of semester

Write 8 page standard conference paper (template on website)

Submit final code

38

37

38

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Finding Project Team

Teams of 4: no exceptions

Use fastcode-forum@lists.inf.ethz.ch:

▪ “I have a project (short description) and am looking for partners”

▪ “I am looking for a team, am interested in anything related to visual
computing”

▪ “We are a group of three with a project on xxx and are looking for a fourth
team member”

In the beginning all of you are registered to that list

Once team is formed register it in our project system,
tell Joao, and we deregister you from mailing list

39

Finding Project
Pick from list on website or select on yourself

Projects from website: number of teams is limited, once picked it is final

Select yourself:

▪ Pick something you are interested in

▪ Nothing that is dominated by standard linear algebra (matrix-matrix mult,
solving linear systems) or FFT, no stencil computations

▪ Send me a short explanation plus a publication with the algorithm for approval

Exact scope can be adapted during semester

▪ reduced to critical component

▪ specialized

You are in charge of your project!

▪ If too big, adapt

▪ If too easy, expand

▪ Don’t come after 2 months and say project does not work
40

39

40

mailto:fastcode-forum@lists.inf.ethz.ch
https://medellin.inf.ethz.ch/courses/263-2300-ETH/

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Organize Project

Work as a team

Start asap with a team meeting, check milestones in project system

Keep communicating regularly during semester

Be fair to your team members, be a team player

Being able to work as a team is part of the exercise

If you give up on the course, say so

If you don’t contribute we will fail you for the project
41

Research Project: Possible Failures

Don’t do this:

▪ never meet

▪ not respond to emails

▪ “I don’t have time right to work on this project in the next few months, why
don’t you start and I catch up later”

▪ “I have a paper deadline in 1 month, cannot do anything else right now”

▪ while not desparate(project-partners) do
“I do my part until end of next week”
… nothing happens …

end

▪ “why don’t you take care of the presentation”

▪ “why don’t you take care of the report, I’ll do the project presentation”

Single point of failure:

▪ One team member is the expert on the project and says: I quickly code up
the basic infrastructure, then the three of you can join working on parts

▪ 1 month later, the “quickly coding up” …
42

41

42

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Midterm Exam

Covers first part of course

Date: Wed, April 26th

No substitute date

There is no final exam

43

Point distribution 2022 (max = 100)

Homework
4 homeworks during first half of course

Done individually, we use Moodle and Code Expert for some autograding

Exercises on algorithm/performance analysis, check out previous years

Implementation exercises

▪ Concrete numerical problems

▪ Study the effect of program optimizations, use of compilers, use of special
instructions, etc. (Writing C code + creating runtime/performance plots)

Small part of homework grade for neatness

Late homework policy:

▪ No deadline extensions, but

▪ 3 late days for the entire semester (at most 2 for one homework)

Solving homeworks completely analogous to homeworks in prior years is no
100% guarantee for full points – the material gets updated occasionally

44

43

44

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Workload During Semester (Sketch)

45

Workload

Beginning of
semester

End of
semester

Homework
Project

Midterm

midterm

lectures end
first one-on-ones

Academic Integrity

Zero tolerance cheating policy (cheat = fail + being reported)

Homeworks

▪ All single-student

▪ Don’t look at other students code

▪ Don’t copy code from anywhere

▪ Don’t share your code or solutions

▪ Ok to discuss things – but then you have to do it alone

We use Moss to check copying (check out what it can do)

Don’t do copy-paste

▪ code

▪ ANY text

▪ pictures

▪ especially not from Wikipedia

46

45

46

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Background Material

See course website and links in slides

Prior versions of this course: see website

I post all slides, notes, etc. on the course website

Training material: midterms and homeworks from prior years

On certain topics, feel free to consult extra resources (e.g., Wikipedia) that
are easily found by a web search

47

Class Participation

All material I cover goes on the website, but not all my verbal explanations

We record all lectures (login credentials will be communicated by email)

It is a good idea to attend but not obligatory (obviously)

Do ask questions

If you drop the course, please unregister in mystudies

48

47

48

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2023

Feedback 2021

49

Workload in comparison with other courses

How technically demanding in comparison with other courses

moreless

moreless

Overall satisfaction with course

happyunhappy

49

