
Last name, first name:

Student number:

263-0007-00L: Advanced Systems Lab
ETH Computer Science, Spring 2023
Midterm Exam
Wednesday, April 26, 2023

Instructions

• Write your full name and student number on the front.

• Make sure that your exam is not missing any sheets.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are
allowed.

Problem 1 (20 = 2+2+2+4+4+6)

Problem 2 (14 = 2+2+3+3+4)

Problem 3 (14 = 3+2+6+3)

Problem 4 (16 = 6+4+6)

Problem 5 (18 = 2+1+3+2+4+6)

Problem 6 (18 = 1+1+2+4+6+4)

Total (100)

1 of 14



Problem 1: Sampler (20 = 2+2+2+4+4+6)

Be brief in your answers, no need to show derivations unless indicated otherwise.

1. What is the advantage of a write-back/write-allocate cache over a write-through/no-
write-allocate cache?

Solution: Subsequent writes to the same memory location does not generate memory
traffic. Thus, resulting in less memory traffic for computations that exhibit good
locality.

2. Assume that a, b, c are variables of type m256d with initial values a= {2, 4, 6, 8}
and b= {1, 5, 5, 9}. Determine the resulting value of c after the following operation:
c = mm256 cmp pd(a,b, CMP GT OQ). Note that with macro CMP GT OQ, the
intrinsic will compute a “greater than” comparison.

Solution: c = {0xFF...F, 0, 0xFF...F, 0 }

3. You are given two sparse matrices A and B and two column vectors x, and y. You
want to compute the MVMs: Ax and yTB. How would you store the matrices to
improve cache performance?

Solution: CSR and CSC

4. Consider the following two functions. Function sum computes the sum of all elements
in an array x of size n and function sum vec is a naive vector implementation of sum.
Both functions compile without errors.

1 double sum(double* x, int n){
2 double a = 0.0;
3 for (int i = 0; i < n; i++)
4 a += x[i];
5 return a;
6 }

1 double sum_vec(double* x, int n){
2 __m256d a = _mm256_setzero_pd();
3 for (int i = 0; i < n; i += 4){
4 __m256d t0 = _mm256_load_pd(x+i);
5 a = _mm256_add_pd(a, t0);
6 }
7 return a[0] + a[1] + a[2] + a[3];
8 }

(a) Which two problems could an unsuspecting user of function sum vec encounter?

Solution: If the array is not 32-byte aligned then mm256 load pd will fail. Also,
if n is not divisible by 4, sum will return the wrong result.

2 of 14



(b) How would you improve the performance of function sum without using SIMD
vector intrinsics?

Solution: Use different accumulators to improve ILP.

5. Consider the following function. sizeof(double) = 8.

1 void f(double *x, unsigned int n, unsigned int s) {
2 double t = 0.0;
3 for (int i = 0; i < n; i += 1) {
4 t += x[i*s];
5 }
6 }

Assume that array x is cache-aligned (i.e., the address of the array maps with the first
element of a block in the first set of the cache) and allocated sufficiently large such that
all accesses in line 4 are within bounds. n is a multiple of 8. Assume that the cache
is initially empty and the cache block size is B = 64 bytes. Determine a tight lower
bound for the number of bytes transferred Q from memory to the cache as a function
of n and s.

Solution: Q(n, s) = min(8ns, 64n)

6. Does a 2-way set associative cache with LRU replacement policy always produce less
or at most the same number of cache misses than a direct-mapped cache of the same
size and with the same block size? If yes, explain why this is the case. Otherwise,
provide a counterexample.

Solution: No. Considering a cache of 16 bytes and block size B = 8, and an array
double x[4]. The access pattern x[0], x[1], x[3], x[0] generates 4 misses
using a 2-way set associative cache. The same access pattern produces 3 misses on a
direct-mapped cache.

3 of 14



Problem 2: Bounds (14 = 2+2+3+3+4)

Consider the following function:

1 void compute(double* x, double* y, double* z, int n) {
2 double a = 0.5;
3 double b = 0.3;
4 double c = 0.1;
5 for(int i = 0; i < n; i++){
6 // OP1 and OP2 are provided in text
7 z[i] = ((a + x[i]) * (b OP1 y[i])) OP2 (c OP1 z[i]);
8 }
9 }

Assume that the above code is executed on a computer with the following relevant la-
tency, gap (inverse throughput), and port information:

Instruction Latency Gap (inverse throughput) Port(s)
[cycles] [cycles/instruction]

add 2 0.25 0,1,2,3
mult 3 0.33 0,1,2
div 6 4 3

The processor does not support vector instructions. Further assume that:

1. You can ignore the latency and throughput of loads and stores, i.e., assume they have
zero latency and infinite throughput.

2. The compiler does not apply any algebraic transformation: the operations are mapped
to their respective assembly instructions.

3. Ignore integer operations.

4. A division counts as one floating-point operation.

Show enough detail with each answer so we understand your reasoning.

4 of 14



1. Determine the maximum theoretical floating-point peak performance in flops/cycle of
the computer under consideration.

Solution: We can schedule 4 additions every cycle. Thus, the peak performance is 4
flops/cycle.

2. Determine the exact flop count W (n) of the compute function. Assume that OP1
and OP2 count as one floating-point operation each.

Solution: W (n) = 5n

3. Assume that both OP1 and OP2 are multiplication operations. Determine a lower
bound (as tight as possible) for the runtime (in cycles) and an associated upper bound
for the performance of the compute function based on the instruction mix, ignor-
ing dependencies between instructions (i.e., don’t consider latencies and assume full
throughput).

T (n) ≥ 4n/3 cycles

.

P (n) ≤ 5n/(4n/3) =
15

4
flop/cycle

4. Repeat the previous task assuming now that OP1 is a multiplication and OP2 a
division.

T (n) ≥ 4n cycles

.

P (n) ≤ 5n/4n =
5

4
flop/cycle

5. Estimate a lower bound (as tight as possible) for the number of cycles that the computa-
tion in line 7 takes to complete. Take latency, throughput and dependency information
into account and assume that OP1 is a division operation and OP2 a multiplication
operation. Draw the corresponding DAG of the computation performed in line 7.

Solution: 13 cycles.

5 of 14



Problem 3: Operational Intensity (14 = 3+2+6+3)

Assume the following for the below computations:

• sizeof(double) = 8.

• A write-back/write-allocate cold cache.

• No temporary arrays are used in the computations.

In the derivations you can omit lower order terms (writing ≈ instead of =). Show your work.

1. Consider the computation E = AB − CD where A,B,C,D,E are n × n matrices of
doubles. The computation is implemented using a triple-loop.

(a) Determine a hard upper bound for the operational intensity I(n) [flops/byte]
considering only compulsory misses. Consider only reads, i.e., data movements
from memory to cache. Recall that for this cache, arrays that are only written
are also read and this read should be included.

Solution:
W (n) ≈ 4n3

Q(n) ≥ 8(5n2)

I(n) ≤ n

10

(b) Would the operational intensity of the computation be different on a write-
through/no-write-allocate cache? Justify your answer and update I(n) if it changed.

Solution: Yes, with this cache E will not be read into the cache. Thus:

Q(n) ≥ 8(4n2)

I(n) ≤ n

8

2. Consider the computation z = z+A(x+y) where x, y, z are column vectors of doubles
of length n. A is an n×n sparse matrix with 3n non-zero elements and invertible. The
computation is done with A in CSR (compressed sparse row) format which, as you
know, uses three arrays (values, col idx and row start) to represent the sparse
matrix. Indices are represented by (4-byte) integers.

(a) Determine a hard upper bound for the operational intensity I(n) [flops/byte].
Consider only compulsory misses. Consider only reads, i.e., data movements from
memory to cache.

Solution:
W (n) = n+ 2k = n+ 2(3n) = 7n

Q(n) ≤ 8(3n+ k) + 4(k + n+ 1) = 8(3n+ 3n) + 4(3n+ n+ 1) = 64n+ 4 ≈ 64n

I(n) ≤ 7

64

6 of 14



(b) Assume that the computation is performed in a computer with a memory band-
width of β = 32 bytes/cycle and peak performance of π flops/cycle. For which
values of π is the computation guaranteed to be memory-bound in the sense of
the roofline model?

Solution: The computation is guaranteed to be memory bound if I(n) · β < π.
Thus, it is memory bound when 7

64
· 32 < π =⇒ 3.5 < π.

7 of 14



Problem 4: Cache Miss Analysis (16 = 6+4+6)

Consider the following function that uses a j-k-i loop and takes as input matrices A,B and
C of size n× n. A,B,C are not aliased. sizeof(double) = 8.

1 /* NOTE: Assume that the notation A[i][j] is transformed to A[i*n + j]. */
2 void f(double *A, double *B, double *C, int n) {
3 for(int j = 0; j < n; j++)
4 for(int k = 0; k < n; k+=2) // Incremented by 2
5 for(int i = 0; i < n; i++)
6 C[i][j] += A[i][k]*B[j][k] + A[i][k+1]*B[j][k+1];
7 }

Assume a fully associative write-back/write-allocate cache of size γ bytes with LRU replace-
ment policy, and a cache block size of 64 bytes. Further, assume that n is divisible by 8.
Assume an initially cold cache and answer the following. Show your work.

1. Assume that n is much larger than γ (i.e., n ≫ γ) and that γ can fit all data in the
innermost loop (i.e., γ > 5 · 64). Consider cache misses from both reads and writes.
Determine the overall number of cache misses incurred when accessing each of the
arrays as a function of n. In the derivations you can omit lower order terms.

(a) Misses when accessing A:

MissesA ≈ n3

2

(b) Misses when accessing B:

MissesB ≈ n2

8

(c) Misses when accessing C:

Missesx ≈ n3

2

2. Determine the minimum value for γ, as precise as possible, such that the computation
only has compulsory misses, i.e., a cache miss only occurs on the first access to a block.
For this, assume that LRU replacement is not used and, instead, cache blocks are
replaced as effectively as possible to minimize misses.

γ ≥ 8 · (n2 + 8n+ 8)

8 of 14



3. Repeat Tasks 1 assuming that f uses a k-i-j loop. The code now looks as follows:

1 void f(double *A, double *B, double *C, int n) {
2 for(int k = 0; k < n; k+=2) // Incremented by 2
3 for(int i = 0; i < n; i++)
4 for(int j = 0; j < n; j++)
5 C[i][j] += A[i][k]*B[j][k] + A[i][k+1]*B[j][k+1];
6 }

(a) Misses when accessing A:

MissesA ≈ n2

2

(b) Misses when accessing B:

MissesB ≈ n3

2

(c) Misses when accessing C:

Missesx ≈ n3

16

9 of 14



Problem 5: Roofline (18 = 2+1+3+2+4+6)

Assume a computer with the following features:

• A CPU with the following ports:
Port 1: ADD, MUL, FMA.
Port 2: ADD, MUL.
Port 3: ADD, DIV.

• A division operation counts as one flop and has a latency of 8 cycles and a gap (inverse
throughput) of 2 cycles.

• The remaining operations have a throughput of 1 per port and a latency of 4 cycles.

• It does not support any SIMD operations.

• A write-back/write-allocate cache. The cache is initially cold.

• The read (memory) bandwidth is βread = 32 bytes per cycle.

2−5

2−4

2−3

2−2

2−1

20

21

22

23

24

25

2−5 2−4 2−3 2−2 2−1 20 21 22 23 24 25

Operational Intensity [Flops / Byte]

Performance [Flops / Cycle]

10 of 14



1. Draw the roofline plot for this computer into the above graph based on maximum
performance and read bandwidth. Annotate the lines so we see your reasoning.

Solution:

π = 4 flops/cycle

βread = 32 bytes/cycle

π/β = 1/8 flops/byte

2. Consider the following computation where x, y and z are arrays. Assume that x, y,
and z are cache-aligned (i.e., the address of an array maps with the first element of
a block in the first set of the cache). sizeof(float) = 4. Assume that FMAs are
used whenever it is possible to fuse an addition with a multiplication:

1 void compute(float* x, float* y, float* z, int n){
2 for(int i = 1; i < n; ++i){
3 float a = x[i] * y[i] + y[i-1];
4 float b = z[i-1] / x[i-1];
5 z[i] = a * b;
6 }
7 }

(a) Determine the exact flop count W (n) of the compute function.

Solution: W (n) = 4n

(b) Based only on the instruction mix, (i.e., considering only throughput and ignoring
dependencies), which performance is maximally achievable for this function and
why? Draw an associated tighter horizontal roofline into the plot above.

Solution: Ignoring data dependencies, there are n FMAs, n MULs and n DIVs
which are executed. Divisions are the bottleneck. Thus, T (n) ≥ 2n cycles. A
tight bound based on the instruction mix is therefore 4n

2n
= 2 flops/cycle.

(c) At what operational intensity I(n) does this new horizontal roofline intersect with
the read memory roofline?

Solution: I = π/β = 2
32

= 1
16

flops/byte.

(d) What is the performance bound if dependencies are also considered? Assume that
operations cannot be reordered (which is the case in the IEEE 754 standrad).

Solution: The FMA in line 3 does not depend on any other operation. The divi-
sion in line 4 depends on the result of the previous iteration. The multiplication
in line 5 depends on the result of the division. Thus the critical path involves
a division and multiplication chain. Thus, the total number of cycles is T (n) ≥
(8 + 4)(n− 1) ≈ 12n and the performance bound is P (n) ≤ 4n/12(n− 1) ≈ 1/3.

11 of 14



3. Assume the cache is fully associative and large enough to fit all the arrays. What is the
upper bound for the operational intensity I(n) considering all cache misses? Consider
only reads (i.e., ignore write-backs). Based on this I(n), which peak performance is
achievable on the specified system taking into account instruction mix and dependen-
cies (i.e., the setting of Task 2d)?

Solution:
W (n) = 4n, Q(n) ≥ 4 · 3n

I(n) ≤ W/Q = 1/3

The computation is memory bound in the setting of Task 2d when I(n) ≤ 1
3·32 . Since

1
3
> 1

3·32 , the computation is compute bound and the peak achievable performance is
1/3 flops/cycle.

12 of 14



Problem 6: Cache Mechanics (18 = 1+1+2+4+6+4)

Consider the following function that takes as input matrices A and B of size N ×M stored
in row major order. A and B are not aliased.

1 void compute(float* A, float *B, int N, int M){
2 for(int j = 0; j < M-3; j += 4)
3 for(int i = 0; i < N; i++)
4 for(int k = j; k < j+4; k++) {
5 float a = A[i*M + k];
6 float b = B[i*M + k];
7 B[i*M + k] = a + b;
8 }
9 }

Make the following assumptions:

• A write-back/write-allocate direct mapped cache of size γ = 1 KiB, and a cache block
size of 64 bytes.

• Array A starts at memory address 0 and B starts at memory address 25 · 26, i.e.,
&A[0] = 0 and &B[0] = &A[400]. With these addresses, both arrays are aligned
to a cache block.

• Array A is cache-aligned, (i.e., the first element of A goes to the first element of a block
in the first set of the cache)

• Memory accesses happen in exactly the order that they appear in lines 5–7.

• sizeof(float) = 4.

Consider N = 6 and M = 48 (thus A and B are not aliased), and answer the following.
Justify your answers.

1. How many sets are in this cache?

1KB

64B
=

210

26
= 24 = 16 sets.

2. Determine the cache set where array B starts.

set id =
25 · 26

26
mod 16 = 9.

3. How many memory accesses occur in the computation in total?

mem accesses = 3 ·N ·M = 3 · 6 · 48

13 of 14



4. Determine the miss/hit pattern for A and B in lines 5-7 (something like Line 5:
MMHH..., Line 6: MMMH..., Line 7: HHMM) for the first iteration of the outer-
most loop (i.e., for j = 0).

Solution:
Line 5: MHHH×6
Line 6: MHHH×6
Line 7: HHHH×6

5. What is the hit-rate for all memory accesses to A and B in the entire computation?
Recall that the hit-rate is num hits/num accesses.

Solution:
For j = 4, 8, 12 the miss-hit pattern is:
Line 5: HHHH×3, MHHH×3
Line 6: MHHH×3, HHHH×3
Line 7: HHHH×6

This pattern repeats. The total number of misses for j = 0, 4, 8, 12 is 2 ·6+2 ·3 ·3 = 30
and the total accesses are N ·M . Thus, the miss-rate is 5

48
and the hit-rate is 43

48
.

6. Assume now that the cache is two-way set associative with LRU replacement policy.
The cache size remains unchanged (i.e., γ = 1 KiB). What is the hit-rate for all memory
accesses to A and B in the entire computation?

Solution:
For this case there are no conflicts. Thus, the miss-rate is 2

48
and the hit-rate is 46

48
= 23

24

14 of 14


