
© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Advanced Systems Lab
Spring 2022
Lecture: DSL-based program generation for performance (Spiral)

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

Spiral: DSL-Based Program Generation
for Performance
www.spiral.net (started 1998)

P, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin
Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson and
Nicholas Rizzolo,
SPIRAL: Code Generation for DSP Transforms
Proceedings of the IEEE, special issue on «Program Generation, Optimization, and
Adaptation'', Vol. 93, No. 2, pp. 232-275, 2005

P, Franz Franchetti and Yevgen Voronenko
Spiral
in Encyclopedia of Parallel Computing, Eds. David Padua, pp. 1920-1933, Springer 2011

Franz Franchetti, Tze-Meng Low, Thom Popovici, Richard Veras, Daniele G. Spampinato,
Jeremy Johnson, P, James C. Hoe and José M. F. Moura
SPIRAL: Extreme Performance Portability
Proceedings of the IEEE, special issue on ``From High Level Specification to High Performance
Code'', Vol. 106, No. 11, 2018

2

http://www.spiral.net/
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=1
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=146
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=299

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

The Problem: Example DFT

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT on Intel Core i7 (4 Cores, 2.66 GHz)
Performance [Gflop/s]

Fastest program

 Same number of operations

 Best compiler

12x

35x

Direct implementation

DFT: Analysis

 Compiler doesn’t do it

 Doing by hand: Very tough

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

3x

3x

5x

locality optimization

vectorization

threading

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Goal of Spiral:

Computer writes high performance library code

“click”

Viterbi Decoder

DFT IP Cores

@ www.spiral.net

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Possible Approach:
Capturing algorithm knowledge:
Domain-specific languages (DSLs)

Structural optimization:
Rewriting systems

High performance code style:
Compiler

Decision making for choices:
Machine learning

Organization

Spiral: Basic system

Vectorization

General input size

Results

Final remarks

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Algorithms: Example FFT, n = 4

SPL (Signal processing language): Mathematical, declarative, point-free

Divide-and-conquer algorithms = breakdown rules in SPL

Fast Fourier transform (FFT)

Representation using matrix algebra

Decomposition Rules (>200 for >40 Transforms)

Decomposition rules = Algorithm knowledge in Spiral

(from ≈100 publications)

Combining these rules yields many algorithms for every given transform

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

SPL to Code

Correct code: easy fast code: very difficult

Program Generation in Spiral
Transform

C Program

Algorithm
(SPL)

Algorithm
(∑-SPL)

Decomposition rules

void sub(double *y, double *x) {
double f0, f1, f2, f3, f4, f7, f8, f10, f11;

f0 = x[0] - x[3];
f1 = x[0] + x[3];
f2 = x[1] - x[2];
f3 = x[1] + x[2];
f4 = f1 - f3;
y[0] = f1 + f3;
y[2] = 0.7071067811865476 * f4;
f7 = 0.9238795325112867 * f0;

< more lines>

+ search or learning
for further tuning

parallelization
vectorization

locality
optimization

basic block
optimizations

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Organization

Spiral: Basic system

Vectorization

General input size

Results

Final remarks

Example: Vectorization in Spiral

Goal: Translate SPL expressions directly into SIMD code

Relationship SPL expressions ↔ vectorization?

one addition
one subtraction

one (4-way) vector addition
one (4-way) vector subtraction

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Step 1: Identify “Good” Vector Constructs

Vector length:

Good (= easily vectorizable) SPL constructs:

Idea: Convert a given SPL expression into a “good” SPL expression through
rewriting (structural manipulation)

SPL expressions recursively built from those

base cases

Step 2: Find Manipulation Rules

Manipulation rules = SIMD knowledge in Spiral

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Example

vectorized arithmetic
vectorized data accesses

Sketch for complex ν = 2

18

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Automatically Generate Base Case Library

Goal: Given instruction set, generate base cases

Idea: Instructions as matrices + search

y = _mm_unpacklo_ps(x0, x1);

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(1,2,1,2));

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(3,4,3,4));

No base case

y0 = _mm_unpacklo_ps(x[0], x[1]);
y1 = _mm_shuffle_ps(x0, x1,

_MM_SHUFFLE(3,4,3,4));

Automatically Generate Base Case Library

Goal: Given instruction set, generate base cases

Idea: Instructions as matrices + search

y = _mm_unpacklo_ps(x0, x1);

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(1,2,1,2));

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(3,4,3,4));

Base case

y0 = _mm_shuffle_ps(x0, x1,
_MM_SHUFFLE(1,2,1,2));

y1 = _mm_shuffle_ps(x0, x1,
_MM_SHUFFLE(3,4,3,4));

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Same Approach for Different Paradigms
Vectorization:Threading:

GPUs: Verilog for FPGAs:

 Rigorous, correct by construction

 Overcomes compiler limitations

Organization

Spiral: Basic system

Vectorization

General input size

Results

Final remarks

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Challenge: General Size Libraries

Challenge:
Library for general input size

DFT(n, x, y) {
…
for(i = …) {

DFT_strided(m, x+mi, y+i, 1, k)
}
…

}

• Algorithm cannot be fixed

• Recursive code

• Creates many challenges

So far:
Code specialized to fixed input size

DFT_384(x, y) {
…
for(i = …) {
t[2i] = x[2i] + x[2i+1]
t[2i+1] = x[2i] - x[2i+1]

}
…

}

• Algorithm fixed

• Nonrecursive code

Challenge: Recursion Steps

Cooley-Tukey FFT

Implementation that increases locality (e.g., FFTW 2.x)

void DFT(int n, cpx *y, cpx *x) {
int k = choose_dft_radix(n);
…
for (int i=0; i < k; ++i)
DFTrec(m, y + m*i, x + i, k, 1);

for (int j=0; j < m; ++j)
DFTscaled(k, y + j, t[j], m);

}

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

S-SPL : Basic Idea
Four additional matrix constructs: S, G, S, Perm

 S (sum) explicit loop
 Gf (gather) load data with index mapping f

 Sf (scatter) store data with index mapping f

 Permf permute data with the index mapping f

S-SPL formulas = matrix factorizations

Example:

Find Recursion Step Closure
Voronenko, 2008

Repeat until closure

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Recursion Step Closure: Examples

DFT: scalar code (like FFTW 2.x)

DFT: full-fledged (vectorized and parallel code)

Summary: Complete Automation for Transforms

• Memory hierarchy optimization
Rewriting and search for algorithm selection
Rewriting for loop optimizations

• Vectorization
Rewriting

• Parallelization
Rewriting

• Derivation of library structure
Rewriting
Other methods

fixed input size code

general input size library

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Organization

Spiral: Basic system

Vectorization

General input size

Results

Final remarks

DFT on Intel Multicore

5MB vectorized, threaded,
general-size, adaptive librarySpiral

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Generating 100s of FFTWs
PhD thesis Voronenko, 2009

Generating 100s of FFTWs
PhD thesis Voronenko, 2009

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Generating 100s of FFTWs
PhD thesis Voronenko, 2009

Computer generated Functions for Intel IPP 6.0

3984 C functions
1M lines of code

Transforms: DFT (fwd+inv), RDFT (fwd+inv), DCT2, DCT3, DCT4, DHT, WHT
Sizes: 2–64 (DFT, RDFT, DHT); 2-powers (DCTs, WHT)
Precision: single, double
Data type: scalar, SSE, AVX (DFT, DCT), LRB (DFT)

Computer generated

Results: SpiralGen Inc.

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Very Large Scale: BG/P

6.4 Tflop/s

32 racks
= 32K node cards
= 128K cores

2010 HPC Challenge Class I Award, Almasi et al.

Organization

Spiral: Basic system

Vectorization

General input size

Results

Final remarks

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Spiral: Summary

Spiral:

Successful approach to automating
the development of computing software

Commercial proof-of-concept

Key ideas:

Algorithm knowledge:
Domain specific symbolic representation

Platform knowledge:
Tagged rewrite rules, SIMD specification

void dft64(float *Y, float *X) {

__m512 U912, U913, U914, U915,...

__m512 *a2153, *a2155;

a2153 = ((__m512 *) X); s1107 = *(a2153);

s1108 = *((a2153 + 4)); t1323 = _mm512_add_ps(s1107,s1108);

t1324 = _mm512_sub_ps(s1107,s1108);

<many more lines>

U926 = _mm512_swizupconv_r32(…);

s1121 = _mm512_madd231_ps(_mm512_mul_ps(_mm512_mask_or_pi(

_mm512_set_1to16_ps(0.70710678118654757),0xAAAA,a2154,U926),t1341),

_mm512_mask_sub_ps(_mm512_set_1to16_ps(0.70710678118654757),…),

_mm512_swizupconv_r32(t1341,_MM_SWIZ_REG_CDAB));

U927 = _mm512_swizupconv_r32

<many more lines>

}

Glimpse of other topics …

38

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

LGen: Generator for Basic Linear Algebra
Spampinato & P, CGO 2014

BLAC

C Program

Algorithm: Tiling decision and propagation
(LL)

Algorithm
(Σ-LL)

void kernel(float *x, float *A, float *B, …) {
float t0_64_0, t0_64_1, t0_64_2, t0_64_3 …;

t0_57_0 = A[0];
t0_56_0 = A[1];
…
t0_59_0 = t0_57_0 + t0_33_0;
t0_63_0 = t0_59_0 * t0_9_0;
t0_59_1 = t0_56_0 + t0_32_0;
t0_60_0 = t0_59_1 * t0_8_0;
< many more lines>

locality
optimization

code style

code level
optimization

vectorization

LGen: Sample Results

MKL

BTO

MKL

generated
generated

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Scala function

PL Support: Example Code Style
Ofenbeck, Rompf, Stojanov, Odersky & P, GPCE 2012

Data flow graph

SPL

def f(x: Array[Double], y: Array[Double]) = {
for (i <- 0 until 2) {
y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
}

def f(x: Array[Rep[Double]],
y: Array[Rep[Double]]) = {
for (i <- 0 until 2) {
y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
}

t0 = s0 + s1;
t1 = s0 - s1;
t2 = s2 + s3;
t2 = s2 - s3;

def f(x: Rep[Array[Double]],
y: Rep[Array[Double]]) = {
for (i <- 0 until 2) {
y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
}

t0 = x[0];
t1 = x[1];
t2 = t0 + t1;
y[0] = t2;
t3 = t0 - t1;
y[1] = t3;
t4 = x[0];
t5 = x[1];
t6 = t4 + x5;
y[0] = t6;
t7 = t4 – x5;
y[3] = t7;

def f(x: Rep[Array[Double]],
y: Rep[Array[Double]]) = {
for (i <- 0 until 2: Rep[Range]) {

y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
}

for (int i=0; i < 2; i++)
{

t0 = x[i];
t1 = x[i+1];
t2 = t0 + t1;
y[i] = t2;
t3 = t0 - t1;
y[i+1] = t3;

}

scalarized

unrolled, scalar repl.

looped, scalar repl.

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

def f(x: Array[Rep[Double]],
y: Array[Rep[Double]]) = {
for (i <- 0 until 2) {
y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
}

t0 = s0 + s1;
t1 = s0 - s1;
t2 = s2 + s3;
t2 = s2 - s3;

def f(x: Rep[Array[Double]],
y: Rep[Array[Double]]) = {
for (i <- 0 until 2) {
y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
}

t0 = x[0];
t1 = x[1];
t2 = t0 + t1;
y[0] = t2;
t3 = t0 - t1;
y[1] = t3;
t4 = x[0];
t5 = x[1];
t6 = t4 + x5;
y[0] = t6;
t7 = t4 – x5;
y[3] = t7;

def f(x: Rep[Array[Double]],
y: Rep[Array[Double]]) = {
for (i <- 0 until 2: Rep[Range]) {

y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
}

for (int i=0; i < 2; i++)
{

t0 = x[i];
t1 = x[i+1];
t2 = t0 + t1;
y[i] = t2;
t3 = t0 - t1;
y[i+1] = t3;

}

scalarized

unrolled, scalar repl.

looped, scalar repl.

def f[L[_],A[_],T](looptype: L, x: A[Array[T]], y: A[Array[T]]) = {
for (i <- 0 until 2: L[Range]) {
y(2*i) = x(i*2) + x(i*2+1)
y(2*i+1)= x(i*2) - x(i*2+1)

}
}

Staging enables program generation

Abstracting over code style =
abstracting over staging decisions

DSLs/Program Generation for Performance

Spiral: Linear transforms (2000-2008)

PetaBricks: Polyalgorithmic tuning (2009)

OptiML: Statistical inference (2011)

Liszt: PDE solvers (2011)

Pochoir: Stencils (2011)

Cl1ck/Clak: Linear algebra (2012)

Halide: Image processing (2013)

LGen: Small linear algebra (2014)

TACO: Tensor algebra (2017)

Lift: Stencils and more (2017)

…. many dozens more, active field of research

44

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Advanced Systems Lab
Conclusions

35x

Straightforward implementations often underperform
by an order of magnitude, even if single-threaded

© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

Research Questions

How to port performance?

How to automate the production of fastest numerical code?

 Domain-specific languages

 Rewriting

 Compilers

 Machine Learning

What program language features help with program generation?

What environment should be used to build generators?

How to represent mathematical functionality?

How to formalize the mapping to fast code?

How to handle various forms of parallelism?

How to integrate into standard work flows?

