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Spiral: DSL-Based Program Generation 
for Performance
www.spiral.net (started 1998)
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Proceedings of the IEEE, special issue on «Program Generation, Optimization, and
Adaptation'', Vol. 93, No. 2, pp. 232-275, 2005

P, Franz Franchetti and Yevgen Voronenko
Spiral
in Encyclopedia of Parallel Computing, Eds. David Padua, pp. 1920-1933, Springer 2011

Franz Franchetti, Tze-Meng Low, Thom Popovici, Richard Veras, Daniele G. Spampinato, 
Jeremy Johnson, P, James C. Hoe and José M. F. Moura
SPIRAL: Extreme Performance Portability
Proceedings of the IEEE, special issue on ``From High Level Specification to High Performance 
Code'', Vol. 106, No. 11, 2018
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The Problem: Example DFT
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Fastest program

 Same number of operations

 Best compiler

12x

35x

Direct implementation

DFT: Analysis

 Compiler doesn’t do it

 Doing by hand: Very tough
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locality optimization

vectorization

threading
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Goal of Spiral:

Computer writes high performance library code

“click”

Viterbi Decoder

DFT IP Cores

@ www.spiral.net
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Possible Approach:
Capturing algorithm knowledge:
Domain-specific languages (DSLs)

Structural optimization:
Rewriting systems

High performance code style:
Compiler

Decision making for choices:
Machine learning

Organization

Spiral: Basic system

Vectorization

General input size

Results 

Final remarks
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Algorithms: Example FFT, n = 4

SPL (Signal processing language): Mathematical, declarative, point-free

Divide-and-conquer algorithms = breakdown rules in SPL

Fast Fourier transform (FFT)

Representation using matrix algebra

Decomposition Rules (>200 for >40 Transforms)

Decomposition rules = Algorithm knowledge in Spiral

(from ≈100 publications)

Combining these rules yields many algorithms for every given transform
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SPL to Code

Correct code: easy fast code: very difficult

Program Generation in Spiral
Transform

C Program

Algorithm
(SPL)

Algorithm
(∑-SPL)

Decomposition rules

void sub(double *y, double *x) {
double f0, f1, f2, f3, f4, f7, f8, f10, f11;

f0 = x[0] - x[3];
f1 = x[0] + x[3];
f2 = x[1] - x[2];
f3 = x[1] + x[2];
f4 = f1 - f3;
y[0] = f1 + f3;
y[2] = 0.7071067811865476 * f4;
f7 = 0.9238795325112867 * f0;

< more lines>

+ search or learning 
for further tuning

parallelization
vectorization

locality 
optimization

basic block
optimizations



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2022

Organization

Spiral: Basic system

Vectorization

General input size

Results 

Final remarks

Example: Vectorization in Spiral

Goal: Translate SPL expressions directly into SIMD code

Relationship SPL expressions ↔ vectorization? 

one addition
one subtraction

one (4-way) vector addition
one (4-way) vector subtraction
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Step 1: Identify “Good” Vector Constructs

Vector length: 

Good (= easily vectorizable) SPL constructs:

Idea: Convert a given SPL expression into a “good” SPL expression through 
rewriting (structural manipulation)

SPL expressions recursively built from those

base cases

Step 2: Find Manipulation Rules

Manipulation rules = SIMD knowledge in Spiral
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Example

vectorized arithmetic
vectorized data accesses

Sketch for complex ν = 2

18
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Automatically Generate Base Case Library

Goal: Given instruction set, generate base cases

Idea: Instructions as matrices + search

y = _mm_unpacklo_ps(x0, x1);

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(1,2,1,2));

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(3,4,3,4));

No base case

y0 = _mm_unpacklo_ps(x[0], x[1]);
y1 = _mm_shuffle_ps(x0, x1, 

_MM_SHUFFLE(3,4,3,4));

Automatically Generate Base Case Library

Goal: Given instruction set, generate base cases

Idea: Instructions as matrices + search

y = _mm_unpacklo_ps(x0, x1);

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(1,2,1,2));

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(3,4,3,4));

Base case

y0 = _mm_shuffle_ps(x0, x1, 
_MM_SHUFFLE(1,2,1,2));

y1 = _mm_shuffle_ps(x0, x1, 
_MM_SHUFFLE(3,4,3,4));
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Same Approach for Different Paradigms
Vectorization:Threading:

GPUs: Verilog for FPGAs:

 Rigorous, correct by construction

 Overcomes compiler limitations

Organization

Spiral: Basic system

Vectorization

General input size

Results

Final remarks
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Challenge: General Size Libraries

Challenge:
Library for general input size

DFT(n, x, y) {
…
for(i = …) {

DFT_strided(m, x+mi, y+i, 1, k) 
}
…

}

• Algorithm cannot be fixed

• Recursive code

• Creates many challenges

So far:
Code specialized to fixed input size

DFT_384(x, y) {
…
for(i = …) {
t[2i]   = x[2i] + x[2i+1]
t[2i+1] = x[2i] - x[2i+1]

}
…

}

• Algorithm fixed

• Nonrecursive code

Challenge: Recursion Steps

Cooley-Tukey FFT

Implementation that increases locality (e.g., FFTW 2.x)

void DFT(int n, cpx *y, cpx *x) {
int k = choose_dft_radix(n);
…
for (int i=0; i < k; ++i)
DFTrec(m, y + m*i, x + i, k, 1); 

for (int j=0; j < m; ++j)
DFTscaled(k, y + j, t[j], m);

}
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S-SPL : Basic Idea
Four additional matrix constructs: S, G, S, Perm

 S (sum)     explicit loop
 Gf (gather) load data with index mapping f

 Sf (scatter) store data with index mapping f

 Permf permute data with the index mapping f

S-SPL formulas = matrix factorizations

Example:

Find Recursion Step Closure
Voronenko, 2008

Repeat until closure
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Recursion Step Closure: Examples

DFT: scalar code (like FFTW 2.x)

DFT: full-fledged (vectorized and parallel code)

Summary: Complete Automation for Transforms

• Memory hierarchy optimization
Rewriting and search for algorithm selection
Rewriting for loop optimizations

• Vectorization
Rewriting

• Parallelization
Rewriting

• Derivation of library structure
Rewriting
Other methods

fixed input size code

general input size library
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Organization

Spiral: Basic system

Vectorization

General input size

Results 

Final remarks

DFT on Intel Multicore

5MB vectorized, threaded, 
general-size, adaptive librarySpiral
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Generating 100s of FFTWs
PhD thesis Voronenko, 2009

Generating 100s of FFTWs
PhD thesis Voronenko, 2009
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Generating 100s of FFTWs
PhD thesis Voronenko, 2009

Computer generated Functions for Intel IPP 6.0

3984 C functions
1M lines of code

Transforms: DFT (fwd+inv), RDFT (fwd+inv), DCT2, DCT3, DCT4, DHT, WHT
Sizes: 2–64 (DFT, RDFT, DHT); 2-powers (DCTs, WHT)
Precision: single, double
Data type: scalar, SSE, AVX (DFT, DCT), LRB (DFT)

Computer generated

Results: SpiralGen Inc.
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Very Large Scale: BG/P

6.4 Tflop/s

32 racks
= 32K node cards 
= 128K cores

2010 HPC Challenge Class I Award, Almasi et al.

Organization

Spiral: Basic system

Vectorization

General input size

Results 

Final remarks
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Spiral: Summary

Spiral: 

Successful approach to automating
the development of computing software

Commercial proof-of-concept

Key ideas:

Algorithm knowledge: 
Domain specific symbolic representation

Platform knowledge:
Tagged rewrite rules, SIMD specification

void dft64(float  *Y, float  *X) {

__m512 U912, U913, U914, U915,...

__m512  *a2153, *a2155;

a2153 = ((__m512  *) X); s1107 = *(a2153);

s1108 = *((a2153 + 4)); t1323 = _mm512_add_ps(s1107,s1108);

t1324 = _mm512_sub_ps(s1107,s1108);

<many more lines>

U926 = _mm512_swizupconv_r32(…);

s1121 = _mm512_madd231_ps(_mm512_mul_ps(_mm512_mask_or_pi(

_mm512_set_1to16_ps(0.70710678118654757),0xAAAA,a2154,U926),t1341),

_mm512_mask_sub_ps(_mm512_set_1to16_ps(0.70710678118654757),…),

_mm512_swizupconv_r32(t1341,_MM_SWIZ_REG_CDAB));

U927 = _mm512_swizupconv_r32

<many more lines>

}

Glimpse of other topics …

38
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LGen: Generator for Basic Linear Algebra
Spampinato & P, CGO 2014

BLAC

C Program

Algorithm: Tiling decision and propagation
(LL)

Algorithm
(Σ-LL)

void kernel(float *x, float *A, float *B, …) {
float t0_64_0, t0_64_1, t0_64_2, t0_64_3 …;

t0_57_0 = A[0];
t0_56_0 = A[1];
…
t0_59_0 = t0_57_0 + t0_33_0;
t0_63_0 = t0_59_0 * t0_9_0;
t0_59_1 = t0_56_0 + t0_32_0;
t0_60_0 = t0_59_1 * t0_8_0;
< many more lines>

locality 
optimization

code style

code level 
optimization

vectorization

LGen: Sample Results

MKL

BTO

MKL

generated
generated
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Scala function

PL Support: Example Code Style
Ofenbeck, Rompf, Stojanov, Odersky & P, GPCE 2012

Data flow graph

SPL

def f(x: Array[Double], y: Array[Double]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

def f(x: Array[Rep[Double]], 
y: Array[Rep[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = s0 + s1;
t1 = s0 - s1;
t2 = s2 + s3;
t2 = s2 - s3;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = x[0];
t1 = x[1];
t2 = t0 + t1;
y[0] = t2;
t3 = t0 - t1;
y[1] = t3;
t4 = x[0];
t5 = x[1];
t6 = t4 + x5;
y[0] = t6;
t7 = t4 – x5;
y[3] = t7;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2: Rep[Range]) {

y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

for (int i=0; i < 2; i++) 
{

t0 = x[i];
t1 = x[i+1];
t2 = t0 + t1;
y[i] = t2;
t3 = t0 - t1;
y[i+1] = t3;

}

scalarized

unrolled, scalar repl.

looped, scalar repl.
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def f(x: Array[Rep[Double]], 
y: Array[Rep[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = s0 + s1;
t1 = s0 - s1;
t2 = s2 + s3;
t2 = s2 - s3;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = x[0];
t1 = x[1];
t2 = t0 + t1;
y[0] = t2;
t3 = t0 - t1;
y[1] = t3;
t4 = x[0];
t5 = x[1];
t6 = t4 + x5;
y[0] = t6;
t7 = t4 – x5;
y[3] = t7;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2: Rep[Range]) {

y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

for (int i=0; i < 2; i++) 
{

t0 = x[i];
t1 = x[i+1];
t2 = t0 + t1;
y[i] = t2;
t3 = t0 - t1;
y[i+1] = t3;

}

scalarized

unrolled, scalar repl.

looped, scalar repl.

def f[L[_],A[_],T](looptype: L, x: A[Array[T]], y: A[Array[T]]) = {
for (i <- 0 until 2: L[Range]) {
y(2*i)  = x(i*2) + x(i*2+1)
y(2*i+1)= x(i*2) - x(i*2+1)

}
} 

Staging enables program generation

Abstracting over code style =
abstracting over staging decisions

DSLs/Program Generation for Performance

Spiral: Linear transforms (2000-2008)

PetaBricks: Polyalgorithmic tuning (2009)

OptiML: Statistical inference (2011)

Liszt: PDE solvers (2011)

Pochoir: Stencils (2011)

Cl1ck/Clak: Linear algebra (2012)

Halide: Image processing (2013)

LGen: Small linear algebra (2014)

TACO: Tensor algebra (2017)

Lift: Stencils and more (2017)

…. many dozens more, active field of research

44
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Advanced Systems Lab
Conclusions

35x

Straightforward implementations often underperform 
by an order of magnitude, even if single-threaded
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Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

Research Questions

How to port performance?

How to automate the production of fastest numerical code?

 Domain-specific languages

 Rewriting

 Compilers

 Machine Learning

What program language features help with program generation?

What environment should be used to build generators?

How to represent mathematical functionality?

How to formalize the mapping to fast code?

How to handle various forms of parallelism?

How to integrate into standard work flows?


