© Markus Piischel ETH
Computer Science s

Advanced Systems Lab
Spring 2022
Lecture: Memory hierarchy, locality, caches

Instructor: Markus Piischel, Ce Zhang

TA: Joao Rivera, several more

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Organization

Temporal and spatial locality
Memory hierarchy

Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2™ edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

Advanced Systems Lab
Spring 2022

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months Bus bandwidth
doubled every 36 months .
y Main
CPU Reg
Memory
Core i7 Skylake: Core i7 Skylake:
Peak performance: Bandwidth

2 AVX three operand (FMA) ops/cycles 16 Bytes/cycle
consumes up to 192 Bytes/cycle

Solution: Caches/Memory hierarchy

a

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

L5:

Typical Memory Hierarchy

L4:

LO:

re gi sters CPU registers hold words retrieved from

L1 cache

L1: on-chip Ll
cache (SRAM) L1 cache holds cache lines retrieved from
L2 cache

L2:)
on-chip L2
cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
main memory
(DRAM) Main memory holds disk blocks
retrieved from local disks

local secondary storage

. Local disks hold files
(local disks) f

retrieved from disks on
remote network servers

remote secondary storage
(tapes, distributed file systems, Web servers)

© Markus Piischel ETH

. Eidg
Computer Science s

e Tachnische Hachschule Zurich
Institute of Technology Zurich

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH

Abstracted Microarchitecture: Example Core i7 Skylake (2015) Memory hierarchy:
Throughput (tp) is measured in doubles/cycle. For example: 4. Numbers are for loading into registers. * Registers
Latency (lat) is measured in cycles * Llcache
1 double floating point (FP) = 8 bytes * L2 cache
fma = fused multiply-add * L3 cache
Rectangles not to scale * Main memory
* Hard disk
double FP: cache latencies are to CPU,
max scalar tp: max vector tp (AVX) i.e., they don’t add
2 fmas/cycle = 2 vfmas/cycle = 8 fmas/cycle =
2 adds/cycle and 8 adds/cycle and
2 mults/cycle 8 mults/cycle
FP add internal 16 P 1
registers % 3 Dbeache
P mul register | ot 4 lat: 12 lat: 42 lat: ~215
tp:12= tp: 8 tp: 4 tp: 2
s out of order execution 8ld+4st Shared
superscalar L3 cache Main
Az 8MB Memory Hard disk
issue 32kB 256 kB 16-way (RAM) m 2057TB
8 pops/ B3y A-way 648 CB 64GBmax . .
cyel 64B CB 64B CB tp:~1/50
ycle
instruction|
decoder
RISC depends
pops CISC ops 1 on hard
. < Icache disk
execution
a technology,
units
1/0
interconnect
instruction pool
1 Core (up to 224 “in flight”) €B = cache block
Corei7-6700 Skylake: sing nercompect__ | Processor die
4 cores, 8 threads Core#1,11,12 < b 13
3.4GHz
(4 GHz max turbo freq) Core#2,11,12 + > 13
2 DDR4 channels 2400 MHz — RaMm
Core#3, 11,12 «{—» 13
Core#4, 11,12 <+——/> 13
core uncore ETH
Source: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Skylake.html o

History of locality

Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

Why Caches Work: Locality

Locality: Programs tend to use data and instructions with addresses near
or equal to those they have used recently

Temporal locality: memory
Recently referenced items are likely | | | | |
to be referenced again in the near future
: ; memory

idgenassische Technische Hochschule Zurich

Computer SCIeNCe s raersimssiute of tecrnology zurich

Advanced Systems Lab

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.7-cpu.com/cpu/Skylake.html
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

Example: Locality?

sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

Data:

= Temporal: sum referenced in each iteration
= Spatial: array a[] accessed consecutively

Instructions:

= Temporal: loops cycle through the same instructions
= Spatial: instructions referenced in sequence

Being able to assess the locality of code is a crucial skill for a performance
programmer

Locality Example #1

int sum_array_rows(double a[M][N])
{

int i, j, sum = 9;

for (i =9; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

© Markus Piischel ETH
. Eidgendssische Technlsche Hochschule Zurich
Computer Science swsss: ot of Technole

weiss Federal Institute

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science s

Locality Example #2

int sum_array 3d(double a[K][M][N]) How to improve locality?
{
int i, j, k, sum = ©;
for (i =0; i < M; i++)
for (j = @; j < N; j++)
for (k = 0; k < K; k++)
sum += a[k][i][3];
return sum;
¥
Performance [flops/cycle] CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
0.4 gec: Apple LLVM version 8.0.0 (clang-800.0.42.1)
Loop order k-i-j flags: -03 -fno-vectorize

Operational Intensity Again

Definition: Given a program P, assume cold (empty) cache
#flops (input size n
win) < Hflop (inp)

Q(n) S~ #bytes transferred cache <> memory
(for input size n)

Operational intensity: |(n) =

Examples: Determine asymptotic bounds on I(n)

= Vectorsum:y=x+y 0(1)
= Matrix-vector product: y = Ax 0o(1)
® Fast Fourier transform O(log(n))
= Matrix-matrix product: C=AB + C O(n)

10

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zuric

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science s

Compute/Memory Bound

A function/piece of code is:
= Compute bound if it has high operational intensity
= Memory bound if it has low operational intensity

Relationship between operational intensity and locality?
= They are closely related
= Operational intensity only describes the boundary last level cache/memory

11

dark gray = outside LLC

Effects

FFT: I(n) = O(log(n)) MMM: I(n) = O(n)

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single) Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double)

3(O;flop/s gflop/s
»
o
;
015 32 64 128 256 512 1024 2048 409 8192 16'384 32768 65'536 131'072 262144 o
o w0 sm swe sow swe s0 rem e oo
matrix size
Up to 40-50% peak Up to 80-90% peak
Performance drop outside last level cache (LLC) Performance can be maintained
Most time spent transferring data outside LLC

Cache miss time compensated/hidden
by computation

12

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zurich

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science =

Cache

Definition: Computer memory with short access time used for the storage
of frequently or recently used instructions or data

CPU Cache Main
Memory

Naturally supports temporal locality

Spatial locality is supported by transferring data in blocks
= Core family: one block = 64 B = 8 doubles

13

Types of Cache Misses (The 3 C’s)

Compulsory (cold) miss

Occurs on first access to a block

Capacity miss

Occurs when working set is larger than the cache

Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects
all map to the same slot

Not a clean classification but still useful

14

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science =

Direct Mapped Cache

How would you build a Cache?

8 Byte DRAM 2 Byte Cache

0000 I:l
0001 l:l
0010 l:l
0011 I:l
0100 I:l
0101 l:l
0110 l:l
0111 I:l

(2) Give me 0011 D

(3) Here is 0011 D

(1) Give me 0011

CPU

Direct Mapped Cache

How would you build a Cache?

8 Byte DRAM

0000 I:l
0001 I:l
0010 I:l
0011 .
0100 I:l
0101 I:l
0110 I:l
0111 I:l

2 Byte Cache
(2) Give me 0011

.— (6) Problem — How can we know this block was 0011?

(3) Here is 0011 D

(1) Give me 0011 | I (4) Here is 0011 | (5) Give me 0011

CPU

Challenge 1. We need to do “bookkeeping” for every entry of cache
(such that we know what it is next time we use it)

Challenge 2. “Bookkeeping” better to be cheap, both for space and
computational efficiency (e.g., in the above example, having a 4-bit
address along with every 1 Byte data is probably a very bad idea)

16

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science s

Direct Mapped Cache

How would you build a Cache?

8 Byte DRAM Design 1: Cache
Problem 1: not very efficient —
0000 I:l o100 I:l 4 bits / 1 byte
0001 D 0111 D Problem 2: no spatial locality

0010 l:l
0011 I:l
0100

0101 l:l
0110 l:l

0111

17

Direct Mapped Cache

How would you build a Cache?

8 Byte DRAM Design 1: Cache
Problem 1: not very efficient —
0000 I:l 0100 I:l 4 bits / 1 byte
0001 D 0111 D Problem 2: no spatial locality

0010 D
0011 D
= _ 1
ool [fon _, EITT!
1 1 010! 1

011

Design 2: Cache

More efficient — 3 bits / 2 byte

Better spatial locality

Problem 3: How to find out
whether e.g., 0010 is in cache?
—Scan all entries!

18

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zuric

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science s

Direct Mapped Cache

How would you build a Cache?

8 Byte DRAM Design 1: Cache
Problem 1: not very efficient —
0000 I:l o100 I:l 4 bits / 1 byte

0110 D Problem 2: no spatial locality

Design 3: Cache
1 <+ last bit

Omo:I:'L:L 010 :\.5_:!,: g? D D 0
o1o1"|:|| o011 I:”:l I:”:l T1

More efficient — 3 bits / 2 byte 2nd [gst bit

Design 2\Cache

| 1
o1 lD' Better spatial locality More efficient — 2 bits / 2 byte

Easy to check: take 0010, 2" last bit =

Probl : H i ;
roblem 3: How to find out 1, find the second “cache entry”, check

whether e.g., 0010 is in cache?

_Scan all entries! the first 2 bits stored there. 19
Direct Mapped Cache
Memory Address (e.g., 32 ths) i
Bits 16 11 a 2 En”y l Tag Data caChe
‘ TAG LINE | OHDIB\‘TE| 2047
7
6
5
4
3
2
1
0
16bits e.g., 32 bytes
|

20

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zuric

Advanced Systems Lab
Spring 2022

Direct Mapped Cache
Memory Address s
Bits 16 1 a2 Entry l Tag Data Cache
‘ TAG LINE | DHDIBV’TE| 204? |
T e~ ¥ 2
[=
7 3
6 8
c a
4 S
3 g
% [[Tag Size Data Size @
0
16bits e.g., 32 bytes
t
32 bit address -> Tag Size (# bits) stored in TAG
+ log, S bits encodes as a “row” in the cache
+ log, Data bits encodes position in the data block n

Cache Structure

Example 1: direct mapped cache (E=1, B=4 doubles, S = 8)
e.g., 01

address of a double (64 bit) 323 I:I
= w| L]

=000
I:I \ S = number

of sets =8
What is the set of all addresses e.g., 101 .

that are mapped to this location?
Direct mapped cache: m
every address yields a unique location in cache | J

Tag: needs to be stored in cache with the value
to allow reconstruction of address

B = block size =
32 byte = 4 doubles

Always entire blocks (here 32 bytes) are loaded into cache 2

© Markus Piischel ETH Advanced Systems Lab
eidgensssische Technische Hachschule Zurich

Computer SCIeNCe swisresersimsirute ot rechnstory zunch Spring 2022

Ignore the variables sum, i, j

Example (S=8, E=1)

assume: cold (empty) cache,
a[0][0] goes here
int sum_array_rows(double a[16][16]) l

[2100] [2][1Ny[212] [2](3]

{ . . . [[2][3]
int i, j; \
double sum = 0; [ol[0] [ol(1] [Ol(2] [03]

for (1 _ [0][4] [o][s] [ol[6] [0(7]

for (j

sum += a[il[7j];
return sum;

[FE
B
[EEEEE
¥ [l [1Rl e
LT
EEEE
\‘———\r————/

0; 1 < 16; i++)
=0; j < 16; j++) i8] [olfs] [0l(10] [ol[ax

[01{12] [0][13] [0][24] [0][15]

(141 [a(s] [1]6] [2](7)

[11(8] [1][9] [1](10] [1][11]

[2][12] [1][13] [1]{24] [2][15]

B = 32 byte = 4 doubles

How is the cache filled?

23
Ignore the variables sum, i, j
Example (5_8’ E_l) assume: cold (empty) cache,
a[0][0] goes here
\L 0] [2][1] [2][2 2][3]
[0][0] [o](1] [0][2] [OI(3]
L)
[1][0] [[e
int sum_array_cols(double a[16][16])
{ I
int i, j;
double sum = 0;
for (j = 0; j < 16; j++) ~——
for (i = 0; i < 16; i++) _ _
sum += a[i][j]; B = 32 byte = 4 doubles
return sum; i i
} How is the cache filled?
24
© Markus Piischel ETH Advanced Systems Lab

. Eidgendssische Technlsche Hochschule Zurich)
Computer SCIeNCe s raersimssiute of tecrnology zurich Spring 2022

© Markus Piischel ETH
Computer Science s

Direct Mapped Cache

Memory Address s
Entry l Tag Data Cache
Bits 16 11 3 2
‘ TAG LINE | UHDIBVTE| 204? |
7
6
5
4
3
2
1
0
16bits 32 bytes
t

How big is this cache? — 64K

How to make it bigger?
(1) Bigger data block — Yes, but this cannot continue forever
(1) Add more of these “building blocks” »

Cache Structure: E-way set-associative cache

Add associativity (£ = 2, B = 4 doubles, S = 8) 2 possibilities

address of a double (64 bit)
tag

e.g., 101 . . :I
E-way set-associative cache: | || __:I

every value has E possible locations
Usually, least recently used (LRU) is replaced

Always entire blocks (here 32 bytes) are loaded into cache
26

Advanced Systems Lab
Spring 2022

Example (S=4, E=2)

int sum_array_rows(double a[16][16])

{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][3];
return sum;

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

l v [2110] [2)1] [21(2] [21(3] ~

[oj[01 [o)(1] [0][2] [0](3] (1001 [u] [wel [@e
Iﬂ [0][5] [o](6] @ Iﬂ [11(s] [1](6] @
[o1(8] [o1[9] [0][10] [o](11])| |[L]8] [a](9] (1](10] [1][11'
I@ [0][13] [0][14] @l IE] [1][13] [1][14]@

How is the cache filled?

27

Example (S=4, E=2)

int sum_array_cols(double a[16][16])
{

int i, j;

double sum = ©;

for (j = @; j < 16; j++)

for (i =0; i < 16; i++)
sum += a[i][3];

return sum;

}

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

l e (210} [21[1) [21(2] [2]13] ~
[0J{0] [o)[1] [0]12] [0][3] (1001 [101] (2] [1]63]

How is the cache filled?

28

© Markus Piischel ETH

Eidgensssische Tachnische Hachschule Zurich

Computer SCIeNCe s raersimssiute of tecrnology zurich

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
s echlshe o

. idf
Computer Science

General Cache Organization (S, E, B)

E = 2¢ lines per set
E = associativity, E=1: direct mapped

s A N
f e [—
N S —
s=2sets< | I - |
A —
Cache size:
S x E x B data bytes

B-1 |

| tg | [0]1]2
|
valid bit | —

B = 2b bytes per cache block (the data)

29

* Locate set

* Check if any line in set
CaChe Read has matching tag
E =2¢lines per set * Yes + line valid: hit
E = associativity, E=1: direct mapped
~ A N * Locate data starting
- at offset
| || | { |
| ” | 4 | Address of word:
S = 75 sets < | || | { | | t bits | s bits | b bits |
tag set block
0000000000000 0C0OCOCFOCIOGIOIOGOGIOIOIOS |ndex Offset
| [L] | |

data begins at this offset

| tag | [0]1[2]-e|B1]
valid bit | N

B = 2® bytes per cache block (the data)

30

Advanced Systems Lab
Spring 2022

Terminology

Direct mapped cache:
® Cache withE=1

Fully associative cache

= Means every block from memory has a unique location in cache

® Cache with S = 1 (i.e., maximal E)

= Means every block from memory can be mapped to any location in cache
= |n practice to expensive to build

= QOne can view the register file as a fully associative cache

LRU (least recently used) replacement

® when selecting which block should be replaced (happens only for E > 1), the
least recently used one is chosen

31

x[0]

Cache:

E =1 (direct mapped)
I e

B =16 (2 doubles)

% Matlab style code
for j = 0:1
for i = 0:7
access(x[i])

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

Small Example, Part 1

Array (accessed twice in example)
x = x[0], .., x[7]

Access pattern: 0123456701234567
Hit/Miss: MHMHMHMHMHMHMHMH

32

© Markus Piischel ETH
Computer Science =

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science

Small Example, Part 2

x[0e]

Cache: Array (accessed twice in example)

I:I E = 1 (direct mapped) x = x[0], .., x[7]
S=2

B =16 (2 doubles)

0246135702461357
MMMMMMMMMMMMMMMM

Access pattern:
Hit/Miss:

% Matlab style code
for j = 0:1
for i = 0:2:7
access(x[i])
for i = 1:2:7
access(x[i])

Result: 16 misses
Spatial locality: no
Temporal locality: no

33

Small Example, Part 3

x[0]

Cache: Array (accessed twice in example)

I:I E = 1 (direct mapped) x = x[0], .., x[7]
S=2

B =16 (2 doubles)

% Matlab style code Access pattern: ©123012345674567
for j = 0:1 Hit/Miss: MHMHHHHHMHMHHHHH
for k = 0:1
for i = 0:3
access(x[i+43])

Result: 4 misses, 12 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH

. g
Computer Science s

Cache Performance Metrics

Miss rate
= Fraction of memory references not found in cache: misses / accesses
=1 - hit rate
Hit time
= Time to deliver a block in the cache to the processor
" Haswell:
4 clock cycles for L1
11 clock cycles for L2
Miss penalty
= Additional time required because of a miss
= Haswell: about 100 cycles for L3 miss

What about writes?

What to do on a write-hit?
= Write-through: write immediately to memory

Werite-back: defer write to memory until replacement of line

What to do on a write-miss?

= Write-allocate: load into cache, update line in cache
= No-write-allocate: writes immediately to memory

Write-back/write-allocate (Core) Write-through/no-write-allocate

mem

update

1: update
cru () cru ()

Write-hit Write-miss Write-hit Write-miss

cPU

36

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH

idg

Computer Science s

Example:

Z=X+Yy, X, Y, z vector of doubles of length n
assume they fit jointly in cache + cold cache
memory traffic Q(n): 4n doubles = 32n bytes

operational intensity I(n)? W(n) = n flops, so
I(n) = W(n)/Q(n) = 1/32

37

Locality Optimization: Blocking

Example: MMM

void mmm(double *A, double *B, double *C, int n) {

for(int i = 0; 1 < n; i++)
for(int j = 0; j < n; j++)
for(int k = @; k < n; k++)
Cln*i + j] = C[n*i + j] + A[n*i + k] * B[n*k + j]; }

row i |——| % = o

column j

38

Advanced Systems Lab
Spring 2022

Cache Miss Analysis MMM c-a*s,alinxn

Assumptions: cache size y << n, cache block: 8 doubles, only 1 cache

Triple loop: Blocked (six-fold loop): block size b, 8 divides b
b
- T o[E]
* = ES =
1.entry: n/8 +n=9n/8 cache misses 1. block: nb/8 + nb/8 = nb/4 cache misses
2.entry: same 2. block: same
Total: n? * 9n/8 = 9n3/8 Total: (n/b)? * nb/4 = n3/(4b)

How to choose b?
The above analysis assumes that the multiplication of b x b blocks can be done with only
compulsory misses. This requires 3b% <.

b = sqrt(y/3) which yields about sqrt(3)/(4*sqrt(y)) * n® cache misses, a gain of = 2.6*sqrt(y)
I(n) = O(sart(y)) 39

Experiment

Cascade Lake (Intel® Xeon® Silver 4210)
GCC9.3.0
Flags: -03 -ffast-math [-fno-tree-vectorize] -march=native

L1 cache: 4096 doubles
Block size b = 32

Vectorization disabled Vectorization enabled
2 Performance [F/C] 2 Performance [F/C]
mmm blocking vec
1.5 1.5
mmm blocking
1 1
0.5 0.5
mmm vec
mmm
0 0
0 400 800 1'200 1'600 2'000 0 400 800 1'200 1'600 2'000

40

© Markus Piischel ETH

Computer Science s

Eidgensssische Tachnische Hachschule Zurich
5% Federal Institute of Technology Zurich

Advanced Systems Lab
Spring 2022

On Previous Slide

Refine the analysis by including the misses incurred by C
Compute the operational intensity in both cases

Try an analogous analysis for matrix-vector multiplication

41
The Killer: Two-Power Strided Working Sets
%t =1,2,4,8,.. a 2-power
% size W of working set: W = n/t
for (i =0; 1< n; i+=1t)
access(x[i])
for (1 =90; i <n; i +=1t)
access(x[i])
Cache: E=2, B =4 doubles
t=2: t=4: t=8: t>4S:
e Je" o] " TJ"" 7] " "J""T] O
e e O] CCECOCTCTT eeeee O
e Je"o7] [eo e J [« e 1 T
e "] [« e I C J 1 T
Spatial locality Some spatial locality ~ No spatial locality No spatial locality No spatial locality
Temporal locality: Temporal locality: Temporal locality: Temporal locality: Temporal locality:
ifwscC ifW<C/2 ifws<c/a ifW<C/8 ifws<2
Working with a two-power-strided working set is like having a smaller cache
42

© Markus Piischel ETH

Computer Science s

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zuric

Advanced Systems Lab
Spring 2022

© Markus Piischel ETH
Computer Science s

The Killer: Where Can It Occur?

Accessing two-power size 2D arrays (e.g., images) columnwise

= 2d Transforms
= Stencil computations
= Correlations

Various transform algorithms
= Fast Fourier transform
= Wavelet transforms
= Filter banks

43

Example from Before

int sum_array_3d(double a[K][M][N])

return sum;

}

Performance [flops/cycle]
04

Loop order k-i-j

035

CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
gec: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

2-power strides

44

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zurich

Advanced Systems Lab
Spring 2022

Summary

It is important to assess temporal and spatial locality in the code

Cache structure is determined by three parameters
= block size
" number of sets
= gssociativity

You should be able to roughly simulate a computation on paper
Blocking to improve locality

Two-power strides can be problematic (conflict misses)

© Markus Piischel ETH Advanced Systems Lab
eidgensssische Technische Hachschule Zurich

Computer SCIeNCe swisresersimsirute ot rechnstory zunch Spring 2022

