
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Advanced Systems Lab
Spring 2022
Lecture: Optimization for Instruction-Level Parallelism

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

1 Core

Abstracted Microarchitecture: Example Core i7 Skylake (2015)
Throughput (tp) is measured in doubles/cycle. For example: 4. Numbers are for loading into registers.
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
fma = fused multiply-add
Rectangles not to scale

Hard disk
≥ 0.5 TB

FP add

FP mul

int ALU

load

store

Main
Memory

(RAM)
64 GB max

L2 cache
256 KB
4-way
64B CB

L1
Icache

L1
Dcache

16 FP
register

internal
registers

instruction
decoder

instruction pool
(up to 224 “in flight”)

execution
units

CISC ops

RISC
μops

issue
8 μops/

cycle

lat: 4
tp: 12 =
8 ld + 4 st

lat: 12
tp: 8

lat: ~215
tp: 2

lat: millions
tp: ~1/50

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• L3 cache
• Main memory
• Hard disk

out of order execution
superscalar

© Markus Püschel
Computer ScienceSource: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Skylake.html

CB = cache block

depends
on hard

disk
technology,

I/O
interconnect

FP fma

logic/
shuffle

Core i7-6700 Skylake:
4 cores, 8 threads
3.4 GHz
(4 GHz max turbo freq)
2 DDR4 channels 2400 MHz RAM

Core #1, L1, L2

Core #2, L1, L2

Core #3, L1, L2

Core #4, L1, L2

L3

L3

L3

L3

ring interconnect

core uncore

double FP:
max scalar tp:
2 fmas/cycle =
2 adds/cycle and
2 mults/cycle

max vector tp (AVX)
2 vfmas/cycle = 8 fmas/cycle =
8 adds/cycle and
8 mults/cycle

both:
32 KB
8-way
64B CB

Shared
L3 cache

8 MB
16-way
64B CB

lat: 42
tp: 4

ISA

processor die

cache latencies are to CPU,
i.e., they don’t add

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.7-cpu.com/cpu/Skylake.html

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Mapping of execution units to ports

Port 0

fp fma

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

fp add

Source: Intel manual (Table C-8. 256-bit AVX Instructions, Table 2-1. Dispatch Port and Execution Stacks of the Skylake Microarchitecture,
Figure 2-1. CPU Core Pipeline Functionality of the Skylake Microarchitecture)

fp div

load load storefp fma

fp mul fp mul

SIMD log

Execution
Unit (fp)

Latency
[cycles]

Throughput
[ops/cycle]

Gap
[cycles/issue]

fma 4 2 0.5

mul 4 2 0.5

add 4 2 0.5

div (scalar)

div (4-way)

14
14

1/4
1/8

4
8

SIMD log

shuffle

fp mov

Int ALU

st addr st addr

st addr

SIMD log Int ALU

Int ALU

Int ALU

• Every port can issue one instruction/cycle
• Gap = 1/throughput
• Intel calls gap the throughput!
• Same exec units for scalar and vector flops
• Same latency/throughput for scalar

(one double) and AVX vector (four doubles)
flops, except for div

execution units

fp = floating point
log = logic
fp units do scalar and vector flops
SIMD log: other, non-fp SIMD ops

fp add

How To Make Code Faster?

It depends!

Memory bound: Reduce memory traffic

 Reduce cache misses

 Compress data

Compute bound: Keep floating point units busy

 Reduce cache misses, register spills

 Instruction level parallelism (ILP)

 Vectorization

Next: Optimizing for ILP (an example)

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book 4

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Superscalar Processor

Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a sequential
instruction stream and are usually scheduled dynamically.

Benefit: Superscalar processors can take advantage of instruction level
parallelism (ILP) that many programs have.

Deep pipelines also require ILP (explained today).

Most CPUs since about 1998 are superscalar

Intel: since Pentium Pro

Simple embedded processors are usually not superscalar

5

ILP

6

t2 = t0 + t1
t5 = t4 * t3
t6 = t2 + t5

t2 = t0 + t1 t5 = t4 * t3

t6 = t2 + t5

Code Dependencies

can be executed in parallel
and in any order

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Hard Bounds: Coffee Lake and Haswell

7

latency 1/tp = gap

FP Add 4 0.5

FP Mul 4 0.5

Int Add 1 0.5

Int Mul 3 1

Coffee Lake

blackboard

latency 1/tp = gap

FP Add 3 1

FP Mul 5 0.5

Int Add 1 0.5

Int Mul 3 1

Haswell More precisely (Int Add):
• tp = 2 if one operand is from mem
• tp = 4 if all operands in register

Only the ALU at Port 1 does Int Mults

How many cycles at least for n mults?

 ceil(n/2) (considering only throughput)

 ceil(n/2) + 3 (considering latency and throughput)
8

Throughput tp = 2/cycle

Gap = 1/tp = 1/2 cycles/issue

cycles

ops

FP Mul 4 0.5

Coffee Lake

latency 1/tp = gap

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Example Computation: Reduction

9

data_t: double or int

OP: + or *

IDENT: 0 or 1

void reduce(vec_ptr v, data_t *dest)
{
int i;
int length = vec_length(v);
data_t *d = get_vec_start(v);
data_t t = IDENT;
for (i = 0; i < length; i++)
t = t OP d[i];

*dest = t;
}

d[0] OP d[1] OP d[2] OP … OP d[length-1]

Runtime of Reduce (Coffee Lake)

Questions:

 Explain red row

 Explain gray row

10

Method Int (add/mult) Float (add/mult)

reduce 1.29 2.95 3.91 3.91

bound 0.5 1.0 0.5 0.5

Measured cycles per OP

void reduce(vec_ptr v, data_t *dest)
{
int i;
int length = vec_length(v);
data_t *d = get_vec_start(v);
data_t t = IDENT;
for (i = 0; i < length; i++)
t = t OP d[i];

*dest = t;
}

This and all following measurements: gcc -O3 -mavx2 -fno-tree-vectorize

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Reduce = Serial Computation (here: *)

Sequential dependence = no ILP!
Hence: performance determined by latency of OP!

11

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

Method Int (add/mult) Float (add/mult)

reduce 1.29 2.95 3.91 3.91

bound 0.5 1.0 0.5 0.5

Loop Unrolling

Perform 2x more useful work per iteration

How does the runtime change?

12

void unroll2(vec_ptr v, data_t *dest)
{

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i += 2)

x = (x OP d[i]) OP d[i+1];
/* Finish any remaining elements */
for (; i < length; i++)

x = x OP d[i];
*dest = x;

}

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Effect of Loop Unrolling

Helps integer sum a bit

Others don’t improve. Why?

 Still sequential dependency

13

x = (x OP d[i]) OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 1.29 2.95 3.91 3.91

unroll2 1.0 2.93 3.90 3.91

bound 0.5 1.0 0.5 0.5

Loop Unrolling with Separate Accumulators

Can this change the result of the computation?

Floating point: yes! 14

void unroll2_sa(vec_ptr v, data_t *dest)
{

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x0 = IDENT;
data_t x1 = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i += 2) {

x0 = x0 OP d[i];
x1 = x1 OP d[i+1];

}
/* Finish any remaining elements */
for (; i < length; i++)

x0 = x0 OP d[i];
*dest = x0 OP x1;

}

Effect on runtime?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Effect of Separate Accumulators

Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *

 Breaks sequential dependency

15

x0 = x0 OP d[i];
x1 = x1 OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 1.29 2.95 3.91 3.91

unroll2 1.0 2.93 3.90 3.91

unroll2-sa 0.8 1.49 1.96 1.97

bound 0.5 1.0 0.5 0.5

Separate Accumulators

16

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

x0 = x0 OP d[i];
x1 = x1 OP d[i+1];

What changed:
 Two independent “streams” of

operations

Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycles per OP ≈ D/2

What Now?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Unrolling & Accumulating

Idea

 Use K accumulators

 Increase K until best performance reached

 Need to unroll by L, K divides L

Limitations

 Diminishing returns:
Cannot go beyond throughput limitations of execution units

 Some overhead for short lengths: Finish off iterations sequentially

17

Unrolling & Accumulating: FP *
Coffee Lake: FP multiplication

 Gap = cycles/issue = 0.5

 Latency = 4

18

A
cc

u
m

u
la

to
rs

FP64 * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 3.91 3.91 3.91 3.91
2 1.97 1.97 1.96
3 1.32 1.32
4 1.00 1.0
6 0.70 0.70
8 0.56

10 0.54
12 0.54

Why 8?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Why 8?

19

Based on this insight: K = #accumulators = ceil(latency / cycles per issue)
= ceil(latency * throughput)

Here: K = ceil(4 / 0.5) = ceil(4 * 2) = 8

Those have to be independent

Unrolling & Accumulating: FP +
Coffee Lake: FP addition

 Gap = cycles/issue = 0.5

 Latency = 4

20

A
cc

u
m

u
la

to
rs

FP64 + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 3.91 3.90 3.90 3.90
2 1.96 1.96 1.96
3 1.32 1.32
4 1.00 1.00
6 0.70 0.70
8 0.56

10 0.54
12 0.54

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Unrolling & Accumulating: Int *
Coffee Lake: Int multiplication

 Gap = cycles/issue = 1

 Latency = 3

21

A
cc

u
m

u
la

to
rs

Int * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 2.94 2.94 2.93 2.93
2 1.49 1.49 1.49
3 1.32 1.32
4 1.01 1.01
6 1.01 1.00
8 1.01

10 1.01
12 1.01

Unrolling & Accumulating: Int +
Coffee Lake: Int multiplication

 Gap = cycles/issue = 0.5

 Latency = 1

22

A
cc

u
m

u
la

to
rs

Int + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 1.29 1.00 1.00 1.00
2 0.80 0.58 0.52
3 0.69 0.52
4 0.57 0.52
6 0.52 0.52
8 0.52

10 0.52
12 0.52

Interesting question: what exactly happens here?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Coffee Lake vs. Haswell: FP +

23

FP64 + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 3.91 3.90 3.90 3.90
2 1.96 1.96 1.96
3 1.32 1.32
4 1.00 1.00
6 0.70 0.70
8 0.56

10 0.54
12 0.54

Coffee Lake:
Latency = 4
Gap = 0.5

Says something about porting processor-tuned code

FP64 + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 2.95 2.95 2.95 2.95
2 1.49 1.49 1.49
3 1.00 1.00
4 1.01 1.01
6 1.01 1.01
8 1.00

10 1.01
12 1.01

Haswell:
Latency = 3
Gap = 1

Apple M1: FP +

24

FP64 + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 2.87 2.83 2.75 2.75
2 1.38 1.39 1.26
3 0.93 0.93
4 0.71 0.71
6 0.49 0.49
8 0.38

10 0.32
12 0.31

Firestorm:
Latency = 3
Gap = 0.25

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Summary (ILP)

Deep pipelines and multiple ports require ILP for good throughput

ILP may have to be made explicit in program

Potential blockers for compilers

 Reassociation changes result (floating point)

 Too many choices, no good way of deciding

Unrolling

 By itself does usually nothing (branch prediction works usually well)

 But may be needed to enable additional transformations
(here: reassociation)

How to program this example?

 Solution 1: program generator generates alternatives and picks best

 Solution 2: use model based on latency and throughput
25

