
Last name, first name:

Student number:

263-0007-00L: Advanced Systems Lab
ETH Computer Science, Spring 2022
Midterm Exam
Wednesday, April 27, 2022

Instructions

• Write your full name and student number on the front.

• Make sure that your exam is not missing any sheets.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are
allowed.

Problem 1 (22 = 2+2+4+4+6+4)

Problem 2 (13 = 3+2+4+4)

Problem 3 (14 = 6+4+4)

Problem 4 (16 = 2+2+6+6)

Problem 5 (18 = 2+4+2+4+6)

Problem 6 (17 = 6+4+7)

Total (100)

1 of 15

Problem 1: Sampler (22 = 2+2+4+4+6+4)

Be brief in your answers, no need to show derivations unless indicated otherwise.

1. Why can a CPU resolve write-after-read (WAR) and write-after-write (WAW) depen-
dencies but not read-after-write (RAW)? How are these dependencies resolved?

Solution: In RAWs the result is necessary for the computation whereas WAR and
WAW are false in the sense that we just happened to write to the same register but
there’s no need to. The dependencies are resolved via register renaming.

2. Can a computation with an O(1) operational intensity benefit from blocking for the
caches?

Solution: Yes.

3. Answer the following regarding SIMD intrinsics. Use of pseudo code or descriptive
pictures in your answer are both fine.

(a) Provide the specification for one of the following intrinsics (you can choose which
one). We will take the worst answer if two specifications are provided. Use the
notation xi to indicate the i-th element of a vector x.

• mm256 permute pd(m256d a, int mask) or

• mm256 unpacklo pd(m256d a, m256d b)

Solution:
c = mm256 unpacklo pd(a, b)

c = mm256 permute pd(a, mask)

2 of 15

(b) Explain what mm256 set1 ps does.

Solution: Broadcast a single-precision (32-bit) floating-point value to all ele-
ments of a (256-bit) vector of single-precision floats.

4. Consider the computation
∑n−1

i=0

∑n−1
j=0 Aij that sums all elements of a matrix of doubles

A of size n×n. Assume that matrix A is sparse with k non-zero elements and full rank.
The computation is done with A in CSR (compressed sparse row) format. Indices are
represented by (4-byte) integers. Determine a tight upper-bound for the operational
intensity of the computation. Show your work.

Solution: Since we are adding all elements in the values array. There is no need to
access the indices. Thus:

W (n) = k − 1

Q(n) ≥ 8k

I(n) ≤ k − 1

8k
≈ 1

8

5. Consider a computer with a direct-mapped cache of size 1024 bytes and a block size
of 64 bytes. In addition, it has a direct-mapped TLB with 32 entries. The page
size is 2MiB. In the following code, assume that the vector x starts at address 0 in
memory and that all memory accesses happen in exactly the order that they appear.
Determine the smallest value for k that yields a TLB miss for every memory access but
only yields compulsory misses in the cache. The cache and TLB are initially empty.
Show your work.

1 void compute(double *x, unsigned int k){
2 double t;
3 for (int i = 0; i < 256; i += 1){
4 t = x[i];
5 x[i + k] = t + 0.1;
6 }
7 }

Solution: In order to get only TLB misses, x[i] and x[i+ k] should map to the same
entry in the TLB. The page size is 218 doubles and the TLB has 25 entries. Thus, they
will map to the same entry when k = 218 · 25 = 223. With this k, x[i] and x[i+ k] will
contend for the same cache block, leading to conflict misses when acessing the cache.
In order to get only compulsory misses in the cache, x[i+ k] should map to the block
next to x[i]. This is achieved with k = 223 + 8.

6. Consider the following function. sizeof(float) = 4.

1 void vecsum(float *a, float *b, float *c, float d*, int n){
2 for (int i = 0; i < n; i += 1) {
3 d[i] = a[i] + b[i] + c[i] + d[i];

3 of 15

4 }
5 }

It is run on an Intel-like single-core computer that can perform 3 additions per cycle,
without SIMD vector executions. The machine only has one cache. For different input
sizes n (starting with very small n), warm-cache measurement yields the following
performance plot.

(a) Estimate the size of the cache in bytes. Note that the x-axis shows the input size
n which is the length of each vector.

Solution: Cache size ≈ 4 · 4 · 256 = 4KB.

(b) Estimate the read bandwidth βcache in bytes/cycle to the cache.

Solution:

βcache = 12 bytes/cycle.

4 of 15

Problem 2: Bounds (13 = 3+2+4+4)

Consider the following function:

1 void compute(float* x, int n, int m){
2 float v1, v2, v3;
3 float c1 = 0.1;
4 float c2 = 0.2;
5 float c3 = 0.3;
6 for(int i=0; i < m-1; i++){
7 x[(i+1)*n] = 1.0;
8 for(int j=0; j < n-2; j++){
9 v1 = x[i*n + j];
10 v2 = x[i*n + j+1];
11 v3 = x[i*n + j+2];
12 x[(i+1)*n+j+1] = (v1+c1)*(v2+c2)*(v3 OP c3); //OP provided in text
13 }
14 x[(i+1)*n + n-1] = x[i*n + n-1];
15 }
16 }

Assume that the above code is executed on a computer with the following relevant la-
tency, gap (inverse throughput), and port information:

Instruction Latency Gap (inverse throughput) Port
[cycles] [cycles/instruction]

add 3 1 0
mult 3 0.5 0/1
div 5 5 2

The processor does not support vector instructions. Further assume that:

1. You can ignore the latency and throughput of loads and stores, i.e., assume they have
zero latency and infinite throughput.

2. The compiler does not apply any algebraic transformation: the operations are mapped
to assembly instructions as shown.

3. Ignore integer operations.

4. A division counts as one floating-point operation.

Show enough detail with each answer so we understand your reasoning.

5 of 15

1. Determine the maximum theoretical floating-point peak performance in flops/cycle of
the computer under consideration.

Solution: Every five cycles the processor can schedule at most 5 additions, 5 multi-
plications and 1 division, resulting in a peak performance of 11

5
flops/cycle.

2. Determine the exact flop count W (n,m) of the compute function. Assume that OP
(in line 12) counts as one floating-point operation.

Solution:
W (n,m) = 5(n− 2)(m− 1) ≈ 5nm

3. Determine a lower bound (as tight as possible) for the runtime (in cycles) and an
associated upper bound for the performance of the compute function based on the
instruction mix, ignoring dependencies between instructions (i.e., don’t consider laten-
cies and assume full throughput). Consider the following two cases:

(a) assume that OP is a division operation.

Divisions are the bottle neck.

T (n) ≥ 5(n− 2)(m− 1)

.
P (n) ≤ 1 flop/cycle

(b) assume that OP is a multiplication operation.

T (n) ≥ 2.5(n− 2)(m− 1)

.
P (n) ≤ 2 flops/cycle

4. Estimate a lower bound (as tight as possible) for the number of cycles that the compu-
tation in line 12 takes to complete. Take latency, throughput and dependency informa-
tion into account and assume that OP is a division operation. Draw the corresponding
DAG of the computation performed in line 12.

Solution:
10 cycles.

6 of 15

Problem 3: Operational Intensity (14 = 6+4+4)

Consider the following code implementing a strided matrix vector multiplication (y = Ax+y):

1 void comp1(double *A, double *x, double *y, int n, int stride){
2 for(int i = 0; i < n; i+= stride)
3 for(int j = 0; j < n; j+= stride)
4 y[i] += A[i*n + j] * x[j]
5 }

Assume the following:

• sizeof(double) = 8.

• A write-back/write-allocate cold cache

• The cache block size is 64 bytes.

• The stride is a power of two.

• n is a multiple of the stride: n = ms for m ∈ N.

• The flop count is 2 · (n
s
)2 = 2m2

In the derivations you can omit lower order terms (writing ≈ instead of =). Show your work.

1. Determine a hard upper bound for the operational intensity I(n, s) [flops/byte] in terms
of n and the stride denoted as s. Consider only compulsory misses for both reads and
writes.

Solution:

W (n, s) = 2 ·
(n
s

)2

= 2 · n
2

s2

Q(n, s) ≥

{
(n
s
·B) · n

s
if s ≥ B

8

8 · n · n
s

if s < B
8

I(n, s, B) ≤

{
2
B

if s ≥ B
8

1
4s

if s < B
8

For B = 64:

I(n, s) ≤

{
1
32

if s ≥ 8
1
4s

if s < 8

2. You are given a computer which has 2 ports. Each port can execute one addition
or one multiplication per cycle (no FMA, and no vector instructions). The memory
bandwidth β is 24 bytes per cycle. For which strides is the computation memory bound
in the sense of the roofline plot?

Solution: The computation is memory bound when I(n) < 2
24

= 1
12
. Thus, the

computation is memory bound for s ≥ 4.

7 of 15

3. Consider a version that is strided across only one dimension:

1 void comp2(double *A, double *x, double *y, int n, int stride){
2 for(int i = 0; i < n; i+= stride)
3 for(int j = 0; j < n; j++) // no stride here
4 y[i] += A[i*n + j] * x[j]
5 }

For the same machine as in Task 2 and assuming that only compulsory misses happen
during the computation, can comp2 ever be memory bound? Justify your answer.

Solution: No. The computation is memory bound when I(n) < 1
12
. However the

operational intensity is I(n, s) = 1
4
(see below). Thus, the computation is always

compute bound.

W (n, s) = 2 ∗
(n
s

)
· n

Q(n, s) ≈ 8 · n
2

s

I(n, s) ≈ 1

4

8 of 15

Problem 4: Cache Mechanics (16 = 2+2+6+6)

You are given a write-back/write-allocate cache with 4 sets and LRU replacement policy. Its
block size is 12 bytes, and the capacity is 96 bytes. Consider the following code which is the
same as in Problem 2. sizeof(float) = 4.

1 void compute(float* x, int n, int m){
2 float v1, v2, v3, v4;
3 float c1 = 0.1;
4 float c2 = 0.2;
5 float c3 = 0.3;
6 for(int i=0; i < m-1; i++){
7 x[(i+1)*n] = 1.0;
8 for(int j=0; j < n-2; j++){
9 v1 = x[i*n + j];
10 v2 = x[i*n + j+1];
11 v3 = x[i*n + j+2];
12 x[(i+1)*n + j+1] = (v1+c1)*(v2+c2)*(v3+c3);
13 }
14 v4 = x[i*n + n-1];
15 x[(i+1)*n + n-1] = v4;
16 }
17 }

Assume that array x starts at the memory address 0. Variables i, j, c1, c2 and c3 are
stored in registers. Memory accesses happen in exactly the order that they appear. Answer
the following. Show your work. Hint: It helps to draw the cache.

1. How many floats fit into this cache?

Solution: 96/4 = 24 floats.

2. What is the associativity of this cache?

Solution: e = 96/12/4 = 2 (2-way set associative).

3. For each of the following values of m and n do the following two things: i) determine
the miss rate; ii) draw the state of the cache at the end of the computation. Show your
work.

(a) For m = 2 and n = 12:

Solution:

i. There are 8 compulsory misses in 43 accesses.
miss rate = 8/43.

ii.

Set 0 1
0 x0,1,2 x12,13,14

1 x3,4,5 x15,16,17

2 x6,7,8 x18,19,20

3 x9,10,11 x21,22,23

9 of 15

(b) For m = 3 and n = 8:

Solution:

i. Again, all data fits in cache. Thus, there are 8 compulsory misses in 54
accesses.
miss rate = 8/54.

ii.

Set 0 1
0 x0,1,2 x12,13,14

1 x3,4,5 x15,16,17

2 x6,7,8 x18,19,20

3 x9,10,11 x21,22,23

10 of 15

Problem 5: Roofline (18 = 2+4+2+4+6)

Assume a computer with the following features:

• A CPU with the following ports:
Port 1: FMA, MUL, ADD.
Port 2: MUL.
Port 3: ADD.

• Each of these operations has a throughput of 1 per port and a latency of 4 cycles.

• It does not support any SIMD operations.

• A write-back/write-allocate cache of size 2 MiB with cache block size B = 64 bytes.
The cache is initially cold.

• The read (memory) bandwidth is 2 doubles per cycle. sizeof(double) = 8.

2−5

2−4

2−3

2−2

2−1

20

21

22

23

24

25

2−5 2−4 2−3 2−2 2−1 20 21 22 23 24 25

Operational Intensity [Flops / Byte]

Performance [Flops / Cycle]

11 of 15

1. Draw the roofline plot for this computer into the above graph. Annotate the lines so
we see your reasoning.

Solution:

π = 4 flops/cycle

β = 8 · 2 = 16 bytes/cycle

π/β = 1/4 flops/byte

2. Consider the following computation where x, y and z are arrays. Assume that x, y, and
z are cache-aligned allocated (i.e., the address of an array maps with the first element
of a block in the first set of the cache):

1 void compute(double* x, double* y, double* z, int n){
2 for (int i=0; i < n; i++) {
3 y[i] = (x[i] * y[i] + y[i]) + z[i];
4 y[i+1] = (x[i+i] + y[i+1]) * y[i] * z[i+1];
5 }
6 }

(a) Based only on the instruction mix, (i.e., ignoring all type of dependencies), which
performance is maximally achievable for this function and why? Draw an associ-
ated tighter horizontal roofline into the plot above.

Solution:

Ignoring data dependencies, there are n FMAs, 2n MULs and 2n ADDs which are
executed. Port 1 can execute n FMAs + 1

3
ADDs + 1

3
MULs, Port 2 can execute

5n
3
MULs and Port 3 can execute 5n

3
ADDs. Thus, T (n) ≥ 5n

3
cycles. W (n) = 6n,

therefore a tight bound based on the instruction mix is 3·6n
5n

= 18
5
= 3.6 flops/cycle.

(b) At what operational intensity I(n) does this new horizontal roofline intersect with
the memory roofline?

Solution:

I = π/β = 18
5·16 = 9

40
flops/byte.

(c) What is the performance bound if dependencies are also considered? Assume
IEEE 754 arithmetic, i.e., operations cannot be reordered.

Solution: Intraloop dependencies: + z[i] ADD can only be scheduled after
the first FMA has finished executing, that is, 4 cycles later. The x[i+1] +
y[i+1] ADD can be scheduled at the same time as the FMA but the * y[i]
MUL is dependent on the results of both operands, meaning it can be scheduled
only 8 cycles after the beginning of the loop iteration. The last MUL * z[i+1]
will be scheduled 12 cycles into the iteration and finish after 16 cycles in total.

12 of 15

Inter loop dependencies: the only independent operation that can be scheduled
across loops is the x[i+1] + y[i+1] MUL. Everything else is dependent on
the previous iteration.

In total, to schedule all instructions approximately 16n cycles are necessary, mean-
ing that the tighter performance bound is 6n/16n = 3/8 flops/cycle.

3. Assume the cache is fully associative and large enough to fit all the arrays. What is the
upper bound for the operational intensity I(n) considering all cache misses? Consider
only reads (i.e., ignore write-backs). Based on this I(n), which peak performance is
achievable on the specified system taking into account instruction mix and dependen-
cies (i.e., the setting of Task 2c)?

Solution:
W (n) = 6n, Q(n) ≥ 8 · 3n

I(n) ≤ W/Q = 1/4

The computation is memory bound in the setting of Task 2c when I(n) ≤ 3
8·16 . Since

1
4
> 3

8·16 , the computation is compute bound and the peak achievable performance is
3/8 flops/cycle.

13 of 15

Problem 6: Cache Miss Analysis (17 = 6+4+7)

Consider the following function that uses a i-j-k loop and takes as input matrices A and B
of size n× n and a vector x of size 5n. A,B, x are not aliased. sizeof(double) = 8.

1 /* NOTE: Assume that the notation A[i][j] is transformed to A[i*n + j].
2 * We use the notation A[i][j] for readability only. */
3 void f(double *A, double *B, double *x, int n){
4 double t1, t2;
5 for (int i = 0; i < n-1; i++)
6 for (int j = 0; j < n-1; j++)
7 for (int k = 0; k < n; k++) {
8 t1 = A[k][j] * B[i+1][k];
9 t2 = A[k][j+1] * B[i][k] + x[j + 4*k];
10 A[k][j] = t1 + t2;
11 }
12 }

Assume a fully associative write-back/write-allocate cache of size γ bytes with LRU replace-
ment policy, and a cache block size of 64 bytes. Further, assume that n is divisible by 8.
Assume an initially cold cache and answer the following. Show your work.

1. Assume that n is much larger than γ (i.e., n ≫ γ) and that γ can fit all data in
the innermost loop (i.e., γ > 5 · 64). Consider cache misses from both reads and
writes. Estimate the number of cache misses incurred when accessing each of the
arrays as a function of n. In the derivations you can omit lower order terms (writing ≈
instead of =).

(a) Misses when accessing A:

MissesA ≈ 9n3

8

(b) Misses when accessing B:

MissesB ≈ n3

4

(c) Misses when accessing x:

Missesx ≈ n3

2

2. Determine the minimum value for γ, as precise as possible, such that the computation
only has compulsory misses, i.e., a cache miss only occurs on the first access to a block.
For this, assume that LRU replacement is not used and, instead, cache blocks are
replaced as effectively as possible to minimize misses.

γ ≥ 8 · (n2 + 2n+ 5n) = 8n2 + 56n

14 of 15

3. Repeat Tasks 1 and 2 assuming that function f uses a j-k-i loop instead, i.e., the code
now looks as follows:

1 void f(double *A, double *B, double *x, int n){
2 double t1, t2;
3 for (int j = 0; j < n-1; j++)
4 for (int k = 0; k < n; k++)
5 for (int i = 0; i < n-1; i++) {
6 t1 = A[k][j] * B[i+1][k];
7 t2 = A[k][j+1] * B[i][k] + x[j + 4*k];
8 A[k][j] = t1 + t2;
9 }
10 }

(a) Misses when accessing A:

MissesA ≈ 9n2

8

(b) Misses when accessing B:

MissesB ≈ n3

(c) Misses when accessing x:

Missesx ≈ n2

2

(d) Minimum value of γ such that the computation only has compulsory misses:

γ ≥ 8 · (8n+ 8 + n2 + 4n+ 8) = 8n2 + 96n+ 128

15 of 15

