
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Advanced Systems Lab
Spring 2021
Lecture: Optimization for Instruction-Level Parallelism

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

1 Core

Abstracted Microarchitecture: Example Core i7 Haswell (2013) and Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 4 (2). Numbers are for loading into registers.
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
fma = fused multiply-add
Rectangles not to scale

Hard disk
≥ 0.5 TB

FP add

FP mul

int ALU

load

store

Main
Memory

(RAM)
32 GB max

L2 cache
256 KB
8-way
64B CB

L1
Icache

L1
Dcache

16 FP
register

internal
registers

instruction
decoder

instruction pool
(up to 192 (168) “in flight”)

execution
units

CISC ops

RISC
μops

issue
8 (6) μops/

cycle

lat: 4 (4)
tp: 12 =
8 ld + 4 st
(4)

lat: 11 (12)
tp: 8 (4)

lat: ~125
(100)
tp: 2 (1)

lat: millions
tp: ~1/50

(~1/100)

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• L3 cache
• Main memory
• Hard disk

Haswell Sandy Bridge

out of order execution
superscalar

© Markus Püschel
Computer ScienceSource: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Haswell.html

CB = cache block

depends
on hard

disk
technology,

I/O
interconnect

FP fma

logic/
shuffle

Core i7-4770 Haswell:
4 cores, 8 threads
3.4 GHz
(3.9 GHz max turbo freq)
2 DDR3 channels 1600 MHz RAM

Core #1, L1, L2

Core #2, L1, L2

Core #3, L1, L2

Core #4, L1, L2

L3

L3

L3

L3

ring interconnect

core uncore

double FP:
max scalar tp:
2 fmas/cycle =
2 (1) adds/cycle and
2 (1) mults/cycle

max vector tp (AVX)
2 vfmas/cycle = 8 fmas/cycle =
8 (4) adds/cycle and
8 (4) mults/cycle

both:
32 KB
8-way
64B CB

Shared
L3 cache

8 MB
16-way
64B CB

lat: ~34
(26-31)
tp: 4 (4)

ISA

processor die

cache latencies are to CPU,
i.e., they don’t add

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Mapping of execution units to ports

Port 0

fp fma

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

fp add

Source: Intel manual (Table C-8. 256-bit AVX Instructions, Table 2-6. Dispatch Port and Execution Stacks of the Haswell Microarchitecture,
Figure 2-2. CPU Core Pipeline Functionality of the Haswell Microarchitecture),

fp div

load load storefp fma

fp mul fp mul

SIMD log

Execution
Unit (fp)

Latency
[cycles]

Throughput
[ops/cycle]

Gap
[cycles/issue]

fma 5 2 0.5

mul 5 2 0.5

add 3 1 1

div (scalar)

div (4-way)

14-20
25-35

1/13
1/27

13
27

SIMD log

shuffle

fp mov

Int ALU

st addr st addr

st addr

SIMD log Int ALU

Int ALU Int ALU

• Every port can issue one instruction/cycle
• Gap = 1/throughput
• Intel calls gap the throughput!
• Same units for scalar and vector flops
• Same latency/throughput for scalar

(one double) and AVX vector (four doubles)
flops, except for div

execution units

fp = floating point
log = logic
fp units do scalar and vector flops
SIMD log: other, non-fp SIMD ops

How To Make Code Faster?

It depends!

Memory bound: Reduce memory traffic

 Reduce cache misses

 Compress data

Compute bound: Keep floating point units busy

 Reduce cache misses, register spills

 Instruction level parallelism (ILP)

 Vectorization

Next: Optimizing for ILP (an example)

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book 4

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Superscalar Processor

Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a sequential
instruction stream and are usually scheduled dynamically.

Benefit: Superscalar processors can take advantage of instruction level
parallelism (ILP) that many programs have.

Deep pipelines also require ILP (explained today).

Most CPUs since about 1998 are superscalar

Intel: since Pentium Pro

Simple embedded processors are usually not superscalar

5

ILP

6

t2 = t0 + t1
t5 = t4 * t3
t6 = t2 + t5

t2 = t0 + t1 t5 = t4 * t3

t6 = t2 + t5

Code Dependencies

can be executed in parallel
and in any order

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Hard Bounds: Haswell and Coffee Lake

7

latency 1/tp = gap

FP Add 3 1

FP Mul 5 0.5

Int Add 1 0.5

Int Mul 3 1

Haswell

latency 1/tp = gap

FP Add 4 0.5

FP Mul 4 0.5

Int Add 1 0.5

Int Mul 3 1

Coffee Lake

blackboard

How many cycles at least for n mults?

 ceil(n/2) + 4 (considering latency and throughput)

 ceil(n/2) (considering only throughput)
8

Throughput tp = 2/cycle

Gap = 1/tp = 1/2 cycles/issue

cycles

ops

FP Mul 5 0.5

Haswell

latency 1/tp = gap

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Example Computation: Reduction

9

data_t: double or int

OP: + or *

IDENT: 0 or 1

void reduce(vec_ptr v, data_t *dest)
{
int i;
int length = vec_length(v);
data_t *d = get_vec_start(v);
data_t t = IDENT;
for (i = 0; i < length; i++)
t = t OP d[i];

*dest = t;
}

d[0] OP d[1] OP d[2] OP … OP d[length-1]

Runtime of Reduce (Haswell)

Questions:

 Explain red row

 Explain gray row

10

Method Int (add/mult) Float (add/mult)

reduce 1.29 2.94 2.95 4.92

bound 0.5 1.0 1.0 0.5

Measured cycles per OP

void reduce(vec_ptr v, data_t *dest)
{
int i;
int length = vec_length(v);
data_t *d = get_vec_start(v);
data_t t = IDENT;
for (i = 0; i < length; i++)
t = t OP d[i];

*dest = t;
}

This and all following measurements: gcc -O3 -mavx2 -fno-tree-vectorize

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Reduce = Serial Computation (here: *)

Sequential dependence = no ILP!
Hence: performance determined by latency of OP!

11

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

Method Int (add/mult) Float (add/mult)

reduce 1.29 2.94 2.95 4.92

bound 0.5 1.0 1.0 0.5

Loop Unrolling

Perform 2x more useful work per iteration

How does the runtime change?

12

void unroll2(vec_ptr v, data_t *dest)
{

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i += 2)

x = (x OP d[i]) OP d[i+1];
/* Finish any remaining elements */
for (; i < length; i++)

x = x OP d[i];
*dest = x;

}

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Effect of Loop Unrolling

Helps integer sum a bit

Others don’t improve. Why?

 Still sequential dependency

13

x = (x OP d[i]) OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 1.29 2.94 2.95 4.92

unroll2 1.0 2.94 2.95 4.92

bound 0.5 1.0 1.0 0.5

Loop Unrolling with Separate Accumulators

Can this change the result of the computation?

Floating point: yes! 14

void unroll2_sa(vec_ptr v, data_t *dest)
{

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x0 = IDENT;
data_t x1 = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i += 2) {

x0 = x0 OP d[i];
x1 = x1 OP d[i+1];

}
/* Finish any remaining elements */
for (; i < length; i++)

x0 = x0 OP d[i];
*dest = x0 OP x1;

}

Effect on runtime?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Effect of Separate Accumulators

Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *

 Breaks sequential dependency

15

x0 = x0 OP d[i];
x1 = x1 OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 1.29 2.94 2.95 4.92

unroll2 1.0 2.94 2.95 4.92

unroll2-sa 0.79 1.49 1.49 2.47

bound 0.5 1.0 1.0 0.5

Separate Accumulators

16

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

x0 = x0 OP d[i];
x1 = x1 OP d[i+1];

What changed:
 Two independent “streams” of

operations

Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycles per OP ≈ D/2

What Now?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Unrolling & Accumulating

Idea

 Use K accumulators

 Increase K until best performance reached

 Need to unroll by L, K divides L

Limitations

 Diminishing returns:
Cannot go beyond throughput limitations of execution units

 Large overhead for short lengths: Finish off iterations sequentially

17

Unrolling & Accumulating: FP *
Haswell: FP multiplication

 Gap = cycles/issue = 0.5

 Latency = 5

18

A
cc

u
m

u
la

to
rs

FP64 * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 4.92 4.92 4.92 4.92
2 2.47 2.47 2.47
3 1.65 1.65
4 1.24 1.24
6 0.85 0.85
8 0.65

10 0.54
12 0.52

Why 10?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Why 10?

19

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)
= ceil(latency * throughput)

Here: K = ceil(5/0.5) = 10

Those have to be independent

Unrolling & Accumulating: FP +
Haswell: FP addition

 Gap = cycles/issue = 1

 Latency = 3

20

A
cc

u
m

u
la

to
rs

FP64 + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 2.95 2.95 2.95 2.95
2 1.49 1.49 1.49
3 1.00 1.00
4 1.01 1.01
6 1.01 1.01
8 1.00

10 1.01
12 1.01

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Unrolling & Accumulating: Int *
Haswell: Int multiplication

 Gap = cycles/issue = 1

 Latency = 3

21

A
cc

u
m

u
la

to
rs

Int * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 2.94 2.94 2.93 2.93
2 1.49 1.49 1.49
3 1.00 1.00
4 1.00 1.00
6 1.01 1.00
8 1.01

10 1.01
12 1.01

Unrolling & Accumulating: Int +
Haswell: Int multiplication

 Gap = cycles/issue = 0.5

 Latency = 1

22

A
cc

u
m

u
la

to
rs

Int + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 1.29 1.00 1.00 1.00
2 0.79 0.58 0.53
3 0.74 0.56
4 0.58 0.55
6 0.56 0.53
8 0.53

10 0.53
12 0.53

Interesting question: what exactly happens here?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2021

Haswell vs. Coffee Lake: FP +

23

FP64 + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 2.95 2.95 2.95 2.95
2 1.49 1.49 1.49
3 1.00 1.00
4 1.01 1.01
6 1.01 1.01
8 1.00

10 1.01
12 1.01

Haswell:
Latency = 3
Gap = 1

FP64 + Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 3.91 3.90 3.90 3.90
2 1.96 1.96 1.96
3 1.32 1.32
4 1.00 1.00
6 0.70 0.70
8 0.56

10 0.54
12 0.54

Coffee Lake:
Latency = 4
Gap = 0.5

Says something about porting processor-tuned code

Summary (ILP)

Deep pipelines require ILP for good throughput

ILP may have to be made explicit in program

Potential blockers for compilers

 Reassociation changes result (floating point)

 Too many choices, no good way of deciding

Unrolling

 By itself does usually nothing (branch prediction works usually well)

 But may be needed to enable additional transformations
(here: reassociation)

How to program this example?

 Solution 1: program generator generates alternatives and picks best

 Solution 2: use model based on latency and throughput
24

