
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Advanced Systems Lab
Spring 2021
Lecture: Architecture/Microarchitecture and Intel Core

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

Organization

Research project: Deadline March 12th

Finding team: fastcode-forum@lists.inf.ethz.ch

2

mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Today

Architecture/Microarchitecture: What is the difference?

In detail: Intel Haswell and Sandybridge

Crucial microarchitectural parameters

Peak performance

Operational intensity

3

Definitions

Architecture (also instruction set architecture = ISA): The parts of a
processor design that one needs to understand to write assembly code

Examples: instruction set specification, registers

Counterexamples: cache sizes and core frequency

Example ISAs

 x86

 ia

 MIPS

 POWER

 SPARC

 ARM

4

Some assembly code

ipf:
xorps %xmm1, %xmm1
xorl %ecx, %ecx
jmp .L8

.L10:
movslq %ecx,%rax
incl %ecx
movss (%rsi,%rax,4), %xmm0
mulss (%rdi,%rax,4), %xmm0
addss %xmm0, %xmm1

.L8:
cmpl %edx, %ecx
jl .L10
movaps %xmm1, %xmm0
ret

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

5

Backward compatible:
Old binary code (≥ 8086)
runs on newer processors.

New code to run on old
processors?
Depends on compiler flags.

time
x86-64

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086
286

386
486
Pentium
Pentium MMX
Pentium III
Pentium 4
Pentium 4E

Pentium 4F
Core 2

Penryn
Core i3/5/7

Sandy Bridge
Haswell

Skylake-X

Intel x86 Processors (subset)

AVX

AVX2

AVX-512

ISA SIMD (Single Instruction Multiple Data)
Vector Extensions

What is it?
 Extension of the ISA. Data types and instructions for the parallel

computation on short (length 2–8) vectors of integers or floats

 Names: MMX, SSE, SSE2, …, AVX, …

Why do they exist?
 Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length

 Doable: Chip designers have enough transistors to play with; easy to build
with replication

We will have an extra lecture on vector instructions
 What are the problems?

 How to use them efficiently

6

+ x 4-way

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

FMA = Fused Multiply-Add

x = x + y z

Done as one operation, i.e., involves only one rounding step

Better accuracy than sequence of mult and add

Natural pattern in many algorithms

Exists only recently in Intel processors (Why?)

7

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];

© Markus Püschel
Computer Science
© Markus Püschel
Computer Science

4-way single

8-way single, 4-way double

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

time
x86-64

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086
286

386
486
Pentium
Pentium MMX
Pentium III
Pentium 4
Pentium 4E

Pentium 4F
Core 2

Penryn
Core i3/5/7

Sandy Bridge
Haswell

Skylake-X

Intel x86 Processors (subset)

AVX

AVX2

AVX-51216-way single, 8-way double

2-way double

FMAs

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Definitions

Microarchitecture: Implementation of the architecture

Examples: Caches, cache structure, CPU frequency, details of the virtual
memory system

Examples

 Intel processors (Wikipedia)

 AMD processors (Wikipedia)

9

Intel’s Tick-Tock Model

Tick: Shrink of process technology

Tock: New microarchitecture

2016: Tick-tock model got discontinued
Now:
process (tick)
architecture (tock)
optimization (opt)

Example: Core and successors
Shown: Intel’s microarchitecture code names
(server/mobile may be different)

10

Core
Conroe

Wolfdale

Nehalem
Nehalem

Westmere

Sandy Bridge
Sandy Bridge

Ivy Bridge

Haswell
Haswell

Broadwell

Skylake
Skylake

Kaby Lake
Coffee Lake

Cannon Lake

2007

2010

2012

Tick

2014

2019

Ice Lake
Ice Lake

Tiger Lake

Opt

65 nm

45 nm

32 nm

22 nm

14 nm

10 nm

7 nm

Tick

Tock

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://en.wikipedia.org/wiki/Amd_processors
http://en.wikipedia.org/wiki/Intel_Tick-Tock

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Intel Processors: Example Haswell

11

Pictures: Intel

Detailed information about Intel processors

http://www.anandtech.com

Microarchitecture:
The View of the Computer Architect

12

we take the software developer’s view …

Source: Intel Architectures Optimization Reference Manual

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Distribute microarchitecture abstraction

13

1 Core

Abstracted Microarchitecture: Example Core i7 Haswell (2013) and Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 4 (2). Numbers are for loading into registers.
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
fma = fused multiply-add
Rectangles not to scale

Hard disk
≥ 0.5 TB

fp add

fp mul

int ALU

load

store

Main
Memory

(RAM)
32 GB max

L2 cache
256 KB
8-way
64B CB

L1
Icache

L1
Dcache

16 FP
register

internal
registers

instruction
decoder

instruction pool
(up to 192 (168) “in flight”)

execution
units

CISC ops

RISC
μops

issue
8 (6) μops/

cycle

lat: 4 (4)
tp: 12 =
8 ld + 4 st
(4)

lat: 11 (12)
tp: 8 (4)

lat: ~125
(100)
tp: 2 (1)

lat: millions
tp: ~1/50

(~1/100)

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• L3 cache
• Main memory
• Hard disk

Haswell Sandy Bridge

out of order execution
superscalar

© Markus Püschel
Computer ScienceSource: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Haswell.html

CB = cache block

depends
on hard

disk
technology,

I/O
interconnect

fp fma

SIMD
logic/sh

uffle

Core i7-4770 Haswell:
4 cores, 8 threads
3.4 GHz
(3.9 GHz max turbo freq)
2 DDR3 channels 1600 MHz RAM

Core #1, L1, L2

Core #2, L1, L2

Core #3, L1, L2

Core #4, L1, L2

L3

L3

L3

L3

ring interconnect

core uncore

double FP:
max scalar tp:
• 2 fmas/cycle =

2 (1) adds/cycle and
2 (1) mults/cycle

max vector tp (AVX)
• 2 vfmas/cycle = 8 fmas/cycle =
• 8 (4) adds/cycle and

8 (4) mults/cycle

both:
32 KB
8-way
64B CB

Shared
L3 cache

8 MB
16-way
64B CB

lat: ~34
(26-31)
tp: 4 (4)

ISA

processor die

cache latencies are to CPU,
i.e., they don’t add

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Runtime Lower Bounds (Cycles) on Haswell

Number flops?

Runtime bound no vector ops:

Runtime bound vector ops:

Runtime bound data in L1:

Runtime bound data in L2:

Runtime bound data in L3:

Runtime bound data in main memory:

15

/* x, y are vectors of doubles of length n, alpha is a double */
for (i = 0; i < n; i++)

x[i] = x[i] + alpha*y[i];

2n

n/2

n/8

n/4

n/4

n

Runtime dominated by data movement:
Memory-bound

maximal achievable percentage
of (vector) peak performance

50

50

12.5

n/2 25

co
n

si
d

er
 r

ea
d

s
o

n
ly

Runtime Lower Bounds (Cycles) on Haswell

Number flops?

Runtime bound no vector ops:

Runtime bound vector ops:

Runtime bound data in L1:

…

Runtime bound data in main memory:

16

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];

2n3

n3/2

n3/8

(3/8) n2

(3/2) n2

Runtime dominated by data operations (except very small n):
Compute-bound

co
n

si
d

er
 r

ea
d

s
o

n
ly

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Operational Intensity

Definition: Given a program P, assume cold (empty) cache

Lower bounds for Q(n) yield upper bounds for I(n)

Sometimes we only consider reads from memory Qread(n) ≤ Q(n)
and thus Iread(n) ≥ I(n)

17

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

Operational Intensity (Cold Cache)

Operational intensity (reads only):

 Flops: W(n)

 Memory transfers (doubles):

 Reads (bytes): Qread(n)

 Operational intensity: I(n) ≤ Iread(n)

18

= 2n

≥ 2n (just from the reads)

≥ 16n
= W(n)/Qread(n) ≤ 1/8

/* x, y are vectors of doubles of length n, alpha is a double */
for (i = 0; i < n; i++)

x[i] = x[i] + alpha*y[i];

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Operational Intensity (Cold Cache)

Operational intensity (reads only):

 Flops: W(n)

 Memory transfers (doubles):

 Reads (bytes): Qread(n)

 Operational intensity: I(n) ≤ Iread(n)

19

= 2n3

≥ 3n2 (just from the reads)

≥ 24n2

= W(n)/Qread(n) ≤ n/12

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];

Compute/Memory Bound

A function/piece of code is:

 Compute bound if it has high operational intensity

 Memory bound if it has low operational intensity

A more exact definition depends on the given platform

More details later: Roofline model

20

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Superscalar Processor

Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a sequential
instruction stream and are usually scheduled dynamically.

Benefit: Superscalar processors can take advantage of instruction level
parallelism (ILP) that many programs have

Most CPUs since about 1998 are superscalar

Intel: since Pentium Pro

Simple embedded processors are usually not superscalar

21

Mapping of execution units to ports

Port 0

fp fma

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

fp add

Source: Intel manual (Table C-8. 256-bit AVX Instructions, Table 2-6. Dispatch Port and Execution Stacks of the Haswell Microarchitecture,
Figure 2-2. CPU Core Pipeline Functionality of the Haswell Microarchitecture),

fp div

load load storefp fma

fp mul fp mul

SIMD log

Execution
Unit (fp)

Latency
[cycles]

Throughput
[ops/cycle]

Gap
[cycles/issue]

fma 5 2 0.5

mul 5 2 0.5

add 3 1 1

div (scalar)

div (4-way)

14-20
25-35

1/13
1/27

13
27

SIMD log

shuffle

fp mov

Int ALU

st addr st addr

st addr

SIMD log Int ALU

Int ALU Int ALU

• Every port can issue one instruction/cycle
• Gap = 1/throughput
• Intel calls gap the throughput!
• Same exec units for scalar and vector flops
• Same latency/throughput for scalar

(one double) and AVX vector (four doubles)
flops, except for div

execution units

fp = floating point
log = logic
fp units do scalar and vector flops
SIMD log: other, non-fp SIMD ops

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Notes on Previous Slide

The availability of more than one port makes the processor superscalar

Execution units behind different ports can start an operation in the same
cycle (superscalar)

Execution units behind the same port cannot start an operation in the
same cycle

Mults and FMAs have throughput of 2 because they have 2 units behind 2
different ports. Each of these units has a throughput of 1

An execution unit with throughput 1 is called fully pipelined

By default the compiler does not use FMAs for single adds or mults

23

Floating Point Registers

Same 16 registers for scalar FP, SSE and AVX

Scalar (non-vector) single precision FP code uses the bottom eighth

Explains why throughput and latency is usually the same for vector and
scalar operations

24

16 xmm (SSE) Scalar (single precision)16 ymm (AVX)

Each register:
256 bits = 4 doubles = 8 singles

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

25

How many cycles are at least required (no vector ops)?

A function with n adds and n mults in the C code

A function with n add and n mult instructions in the assembly code

A function with n adds in the C code

A function with n add instructions in the assembly code

A function with n adds and n/2 mults in the C code

n/2

n

n/2

n

n/2

Port 0

fp fma

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

fp adddiv

load load storefp fma

fp mul fp mul

SIMD log

SIMD log

shuffle

fp mov

Int ALU

st addr st addr

st addr

SIMD log Int ALU

Int ALU Int ALU

execution units

Comments on Intel Haswell μarch

Peak performance 16 double precision flops/cycle (only reached if SIMD FMA)

 Peak performance mults: 2 mults/cycle (scalar 2 flops/cycle, SIMD AVX 8 flops/cycle)

 Peak performance adds: 1 add/cycle (scalar 1 flop/cycle, SIMD AVX 4 flops/cycle)
FMA in port 0 can be used for add, but longer latency

L1 bandwidth: two 32-byte loads and one 32-byte store per cycle

Shared L3 cache organized as multiple cache slices for better scalability
with number of cores, thus access time is non-uniform

Shared L3 cache in a different clock domain (uncore)

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Example: Peak Performance

27

Peak performance
of this computer:
4 cores x
2-way SSE x
1 add and 1 mult/cycle
= 16 flops/cycle
= 48 Gflop/s

(Sandy Bridge)

Summary

Architecture vs. microarchitecture

To optimize code one needs to understand a suitable abstraction of the
microarchitecture and its key quantitative characteristics

 Memory hierarchy with throughput and latency info

 Execution units with port, throughput, and latency info

Operational intensity:

 High = compute bound = runtime dominated by data operations

 Low = memory bound = runtime dominated by data movement

28

