
Optimizing relational queries over bit-parallel database layout

Reading:
 - BitWeaving: One early attempt on bit parallel database
layout https://15721.courses.cs.cmu.edu/spring2016/papers/li-sigmod2013.pdf
 - MLWeaving: One recent attempt on bit parallel database layout taking into consideration
different precision levels https://arxiv.org/pdf/1903.03404.pdf

Work Packages
This project is organized in three levels. We expect you to at least do a good job finishing
Level 1 and Level 2.

Level 1. (Warm-up) Let R be a relation stored in the MLWeaving layout, optimize the
following SELECT query:
 SELECT * FROM R WHERE R.a < R.b;
and AGGREGATE query:
 SELECT SUM(c) FROM R WHERE R.a < R.b;
(You don't need to write the parser, your program can hard code `a, b, c`)

Level 2. (Harder) Let R and S be two relations stored in the MLWeaving layout, optimize a
join query such as
 SELECT * FROM R, S WHERE R.a % S.b = S.c;
(implement the nested-loop join algorithm, your program can hard code `a, b, c`)

Level 3. You can be creative and to go further in different directions.

Possibility 1: Support different precision levels.
 SELECT * FROM R WHERE R.a < R.b WITH INPUT PRECISION X bit;
 SELECT SUM(c) FROM R WHERE R.a < R.b WITH INPUT PRECISION X bit;
 SELECT * FROM R, S WHERE R.a % S.b = S.c WITH INPUT PRECISION X bit;
 (Bonus point: think about how to generalize your design to support different precision
levels)

Possibility 2: Can we optimize and twist the MLWeaving layout to better support these
queries?

Possibility 3: your ideas

Use the different functions one can implement to divide among team members.

https://15721.courses.cs.cmu.edu/spring2016/papers/li-sigmod2013.pdf
https://arxiv.org/pdf/1903.03404.pdf

	Optimizing relational queries over bit-parallel database layout
	Reading:
	Work Packages

