
Last name, first name:

Student number:

263-0007-00L: Advanced Systems Lab
ETH Computer Science, Spring 2021
Midterm Exam
Wednesday, April 21, 2021

Instructions

• Write your full name and student number on the front.

• Make sure that your exam is not missing any sheets.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are
allowed.

Problem 1 (18 = 2+2+4+6+4)

Problem 2 (12 = 4+4+4)

Problem 3 (20 = 2+2+6+6+4)

Problem 4 (20 = 2+2+2+4+4+3+3)

Problem 5 (18 = 7+5+6)

Problem 6 (12 = 2+2+2+2+2+2)

Total (100)

1 of 17



Problem 1: Bounds (18 = 2+2+4+6+4)

Consider the following two functions:

1 void f1 (double *x, double *y, double *z, int n){
2 double t;
3 for(int i=0; i < n; i++){
4 double a = x[i];
5 double b = y[i];
6 double c = z[i];
7 z[i] = (5.0*a*a + 4.0*b*b) + 3.0*c;
8 }
9 }
10
11 void f2 (double *x, double *y, double *z, int n){
12 double t;
13 for(int i=0; i < n; i++){
14 double a = x[i];
15 double b = y[i];
16 double c = z[i];
17 z[i] = (a*a)/4.0 + b*b - c*c;
18 }
19 }

Assume that the above code is executed on a machine with the following relevant latency,
gap (inverse throughput), and port information:

Instruction Latency Gap (inverse throughput) Port
[cycles] [cycles/instruction]

add/subtract 2 0.5 0/1
mult 3 1 1
div 5 4 2

The processor does not support vector instructions. Further assume that:

1. You can ignore the latency and throughput of loads and stores, i.e., assume they have
zero latency and infinite throughput.

2. The compiler does not apply any algebraic transformation: the operations are mapped
to assembly instructions as shown.

3. Ignore integer operations.

4. A division counts as one floating point operation.

Show enough detail with each answer so we understand your reasoning.

2 of 17



1. Determine the maximum theoretical floating point peak performance in flop/cycle of
the machine under consideration.

2. Determine the flop count W (n) of f1 and f2.

3. Determine for each function: a lower bound (as tight as possible) for the runtime (in
cycles) and an associated upper bound for the performance of f1 and f2 based on
the instruction mix, ignoring dependencies between instructions (i.e., don’t consider
latencies and assume full throughput).

f1:

f2:

3 of 17



4. Suggest an improvement for each function, i.e. algebraic transformations, that produces
the same result in real arithmetic but results in smaller lower bounds for their runtime.
Again, only consider the instruction mix, ignoring dependencies. State also these new
lower bounds for the runtime of f1 and f2.

f1:

f2:

5. Estimate for the original function f1 (i.e. not the one with improvement done in task 4)
a lower bound for its runtime (as tight as possible) of one loop iteration taking latency,
throughput and dependency information into account. Draw the corresponding DAG
of one iteration of function f1.

4 of 17



Problem 2: Operational Intensity (12 = 4+4+4)

Consider the computation z = Ax+Cy where x, y, z are column vectors of doubles of length n
and A,C are n×n matrices of doubles. No temporary arrays are used in these computations.
We assume a write-back/write-allocate cache with blocks of size 32 bytes and a cold cache
at the start of the computation. sizeof(double) = 8. In the derivations you can omit
lower order terms (writing ≈ instead of =). Show your work.

1. Determine a hard upper bound for the operational intensity I(n) [flops/byte] of the
computation considering only compulsory misses. Consider both reads and writes.
Note: The upper bound should hold for all cases, independently of the memory layout
of the operands and the implementation.

2. You are given a machine which has 2 ports. Each port can execute one add or one
multiplication per cycle (no FMA, and no vector instructions). For what values of the
memory bandwith β (in bytes/cycle) is the computation guaranteed to be memory
bound?

3. Compute now a lower bound for the operational intensity assuming that every memory
access leads to a misse. Exclude read/write acesses to z in the analysis.

5 of 17



Problem 3: Cache Mechanics (20 = 2+2+6+6+4)

You are given a cache with 4 sets and LRU replacement policy. Its block size is 16 bytes,
and the capacity is 128 bytes. Consider the following code. sizeof(double) = 8.

1 double a[40];
2 double x = 0;
3 for (int i = 0; i < 20; ++i) {
4 double lhs = a[2*i];
5 double rhs = a[f(i)];
6 x += lhs * rhs;
7 }

Assume that array a starts at the memory address 0. Variables x, i, lhs and rhs are
stored in registers. Memory accesses happen in exactly the order that they appear. Answer
the following. Show your work. Hint: It helps to draw the cache.

1. How many doubles fit into this cache?

2. What is the associativity of this cache?

3. For each of the following definitions of f(i) do the following two things: i) determine
the miss rate; ii) draw the state of the cache at the end of the computation. Show your
work.

(a) f(i) = (2*i) % 8:

6 of 17



(b) f(i) = (2*i + 4) % 40:

4. Give an example of f(i) that yields the maximal miss rate. All memory accesses
have to be valid (no index out of bounds accesses). Show your reasoning.

7 of 17



Problem 4: Roofline (20 = 2+2+2+4+4+3+3)

Assume a computer with the following features:

• A CPU that supports single precision floating point operations. The relevant port
information is as follows:
Port 1: fma, mul, add.
Port 2: fma, mul.

• Each of these operations has a throughput of 1 per port and a latency of 4 cycles.

• It does not support any SIMD operations.

• A write-back/write-allocate cache of size 2 MiB with cache block size B = 64 bytes.
The cache is initially cold.

• The read (memory) bandwidth is 8 floats per cycle. sizeof(float) = 4.

2−5

2−4

2−3

2−2

2−1

20

21

22

23

24

25

2−5 2−4 2−3 2−2 2−1 20 21 22 23 24 25

Operational Intensity [Flops / Byte]

Performance [Flops / Cycle]

8 of 17



1. Draw the roofline plot for this computer into the above graph. Annotate the lines so
we see your reasoning.

2. Consider the following computation where x, y, and z are arrays. Assume that x, y,
and z are cache-aligned allocated (i.e., the address of an array maps with the first cache
block):

1 void compute(float* x,float* y,float* z, int n){
2 for(int i=0; i < n; i++){
3 y[i+1] = (x[i]*y[i] + y[i]) + z[i];
4 }
5 }

Based on the instruction mix (i.e. ignoring dependencies), which performance is max-
imally achievable for this function and why? Draw an associated tighter horizontal
roofline into the plot above.

3. At what operational intensity I(n) does this new horizontal roofline intersect with the
memory roofline?

9 of 17



4. Based on the instruction mix and on data dependencies, which performance is maxi-
mally achievable for this function and why? We repeat the code for convenience:

1 void compute(float* x,float* y,float* z, int n){
2 for(int i=0; i < n; i++){
3 y[i+1] = (x[i]*y[i] + y[i]) + z[i];
4 }
5 }

5. Assume the cache is directly mapped, initially cold, and the expressions are evaluated
from left to right ignoring data dependency. Assume the same array alignment as in
Task 2.

(a) Compute an upper bound (as tight as possible) for the operational intensity for
large n. Consider only reads (i.e., ignore write-backs).

(b) Based on this I(n), which peak performance is achievable on the specified system
taking into account instruction mix (i.e. the setting of Task 2)? In addition,
indicate whether the computation is compute or memory bound.

10 of 17



6. What minimal associativity should the cache have to achieve the same performance as
with a fully associative cache.

11 of 17



Problem 5: Cache Miss Analysis (18 = 7+5+6)

Consider the following computation that takes as input matrices X, Y and Z of size n× n.
sizeof(double) = 8. (X, Y, Z are not aliased).

1 /* NOTE: Assume that the notation A[i][j] is transformed to A[i*n + j].
2 * We use the notation A[i][j] for readability only. */
3 void f(double *X, double *Y, double *Z, int n){
4 double t1, t2;
5 for (int i = 1; i < n-1; i += 1) {
6 for (int j = 1; j < n-1; j += 1){
7 t1 = X[i][j] + 0.25*(X[i][j-1] + X[i][j+1] + X[i-1][j] + X[i+1][j]);
8 t2 = Y[j][0] + Y[j][4] + Y[j][8];
9 Z[i][j] = t1 + t2;
10 }
11 }
12 }

Assume a fully associative write-back/write-allocate cache of size γ bytes, a cache block
size of 64 bytes, and only one cache. Further assume that n is much larger than γ. In
the following we perform two cache miss analyses assuming an initially cold cache. In the
derivations you can omit lower order terms (writing ≈ instead of =). Show your work.

1. Considering cache misses from both reads and writes, estimate the number of cache
misses incurred by f as a function of n.

12 of 17



2. Assume that we apply loop interchange, i.e., we swap the lines 5 and 6 in the code
above. Estimate again the number of cache misses incurred by f when this optimization
is applied. The code looks now as follows:

1 void f(double *X, double *Y, double *Z, int n){
2 double t1, t2;
3 for (int j = 1; j < n-1; j += 1){
4 for (int i = 1; i < n-1; i += 1) {
5 t1 = X[i][j] + 0.25*(X[i][j-1] + X[i][j+1] + X[i-1][j] + X[i+1][j]);
6 t2 = Y[j][0] + Y[j][4] + Y[j][8];
7 Z[i][j] = t1 + t2;
8 }
9 }
10 }

13 of 17



3. Now we try to reduce the number of misses by blocking the computation into blocks
of size b× b, b a multiple of 8. This means it now has the following loop structure (we
ignore clean-up code if b does not divide n− 2):

1 void f_blocked(double *X, double *Y, double *Z, int n){
2 double t1, t2;
3 for (int i = 1; i < n-1; i += b)
4 for (int j = 1; j < n-1; j += b)
5 for (int i1 = i; i1 < i+b; i1 += 1)
6 for (int j1 = j; j1 < j+b; j1 += 1){
7 t1 = X[i1][j1] + 0.25*(X[i1][j1-1] + X[i1][j1+1]
8 + X[i1-1][j1] + X[i1+1][j1]);
9 t2 = Y[j1][0] + Y[j1][4] + Y[j1][8];
10 Z[i1][j1] = t1 + t2;
11 }
12 }

Estimate the number of cache misses incurred by f blocked. In doing so, upper
bound the size of b so that you achieve good cache locality. Show also this bound.

14 of 17



Problem 6: Sampler (12 = 2+2+2+2+2+2)

Be brief in your answers, no need to show derivations.

1. You are given a computation of the form:

1 for(int i = 0; i < n; ++i) {
2 acc = acc OP x[i];
3 }

where OP is a binary operation with gap = 0.5 cycles/issue and latency L. Assume
that we unroll the loop by a factor of K and use K accumulators to improve ILP
(the computation stays the same when K = 1). Assume that n is large. How many
accumulators should you use at least to achieve the highest performance?

2. Give an example of a SIMD intrinsic that is not mapped to a single assembly instruc-
tion.

3. Explain what mm256 loadu pd does.

15 of 17



4. Consider the following computation where x and y are arrays.

1 void compute(float* x, float* y, int n){
2 for(int i=0; i < n; i++){
3 y[i] += x[i]*y[i];
4 }
5 }
6
7 ...
8 int reps = 100000;
9 uint64_t t1 = time();
10 for(int r=0; r < reps; r++){
11 compute(x, y, N);
12 }
13 double mean_duration = (time() - t1)/(double)reps;

Assume N = 128. Would the code above provide a reliable measurement on existing
modern CPUs, if we plan to measure the performance of the function for cold caches?
Explain why. How can we modify the code to achieve that goal?

5. Consider a processor with a 16-way set associative cache of size 128KiB and block size
32 bytes. Propose a suitable page size (as small as possible) such that the cache look
up can start concurrently with the TLB look up.

16 of 17



6. Provide col idx(M) and row start(M) of the below matrix when expressed in Com-
pressed Sparse Row (CSR) format.

M =


0 1 2 0
0 3 0 0
9 0 5 0
7 0 0 4



17 of 17


