
263-0007-00: Advanced Systems Lab
Assignment 4: 120 points

Due Date: April 17th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2021/

Questions: fastcode@lists.inf.ethz.ch

Academic integrity:

All homeworks in this course are single-student homeworks. The work must be all your own. Do not copy any parts

of any of the homeworks from anyone including the web. Do not look at other students’ code, papers, or exams. Do

not make any parts of your homework available to anyone, and make sure no one can read your files. The university

policies on academic integrity will be applied rigorously.

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=14942.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after
the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be available
for submission on the system 2 days after the deadline. However, if the accumulated time of the previous
homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Neatness)
5 points in a homework are given for neatness.

Exercises

1. Associativity (20 pts)

Consider the following function, executed on a machine with a write-back/write-allocate cache with
blocks of size 16 bytes, a total capacity of 128 bytes and with a LRU replacement policy. Arrays x, y
and z are cache-aligned (first element goes into first cache block). Assume that memory accesses occur
in exactly the order that they appear in the code. Thus, no optimizations are performed that reduce
the memory accesses or reorder computations. The variables i and t remain in registers and do not
cause cache misses.

1 void calculate1 (double* x, double* y, double* z) {

2 double t = 0.0;

3 for (int i = 1; i <= 10; i++) {

4 t += x[(4*i)% 12];

5 t += y[(3*i-2)% 8];

6 z[(4*i-1)% 8] = t;

7 }

8 }

(a) Considering cache misses from both reads and writes, compute the following two things: i) the
miss/hit pattern for x, y and z (something like x:MMHHM..., y:MMMH...); ii) the operational
intensity (in flops/byte) of the above computation for the following cases. For the operational
intensity assume empty caches and consider only reads but note: arrays that are only written are
also read and this read should be included. Show your work.

263-0007-00 SS21 / Assignment 4
Instructor: Markus Püschel

Pg 1 of 7 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2021/
https://moodle-app2.let.ethz.ch/course/view.php?id=14942

i. Miss/hit pattern and operational intensity when the cache is 2-way set associative.
Solution:
x:MMMHHHHMMH, y:MMMMHMHHMH, z:MMHHHHHHHH.
Iread = W

Qread
= 20

13·16 ≈ 0.0961.

ii. Miss/hit pattern and operational intensity when the cache is 4-way set associative.
Solution:
x:MMMMHHMMHH, y:MMMMHMHHHM, z:MMHHHHHHHH.
Iread = W

Qread
= 20

14·16 ≈ 0.0893.

(b) Assuming a 2-way set associative cache (motivate your answers):

i. What kind(s) of locality do the accesses to array x have?
Solution: Temporal.

ii. What kind(s) of locality do the accesses to array y have?
Solution: Spatial and Temporal.

2. Cache Mechanics (35 pts) Consider the following code, executed on a machine with a write-back/write-
allocate direct-mapped cache with blocks of size 32 bytes, a total capacity of 12KiB and with a LRU
replacement policy. Assume that memory accesses occur in exactly the order that they appear. The
variables i,j,k,t and n remain in registers and do not cause cache misses. Arrays A and B are
cache-aligned (first element goes into first cache block). For this and the following exercises, assume a
cold cache scenario. sizeof(double) = sizeof(uint64 t) = 8.

1 #define PADDING_SIZE 1

2 typedef struct {

3 double v;

4 double d[3];

5 uint64_t u[3];

6 uint64_t pad[PADDING_SIZE];

7 } struct_t;

8
9 void calculate1(struct_t *A, struct_t *B, int n) {

10 double t;

11 for (int i = 0; i < n; ++i) {

12 for (int j = 0; j < n; ++j) {

13 t = A[i*n + j].v;

14 for (int k = 0; k < 3; k++) {

15 t += A[i*n + j].d[k];

16 }

17 for (int k = 0; k < 3; k++) {

18 A[i*n + j].u[k] = 0;

19 }

20 t += B[j*n].v;

21 B[j*n].v = t;

22 }

23 }

24 }

Considering cache misses from both reads and writes, compute i) the cache miss rate and ii) the
operational intensity (in flops/byte) of the above computation for the following cases. For the
operational intensity assume only reads, i.e., data movement from main memory to cache. Show
enough details so we can see your reasoning.

(a) Miss rate and operational intensity for n = 8.

Solution: Array A is accessed 7n2 times and array B is accessed 2n2 times, resulting in 9n2

memory accesses. Since an element struct t fit in two cache blocks, accesses to A will result in
2 compulsory misses in every iteration. This results in a total of 2n2 misses when accessing A.
Array B accesses the same n elements for all i and the elements are accessed with a stride n.
Since B fits completely in cache for n = 8 it will not have conflicts misses with itself. For i = 0,
there will be n compulsory misses when accessing B. For i = 1, array A will conflict with B
resulting in one conflict miss. Array A will continue conflicting with and element of B in the next

263-0007-00 SS21 / Assignment 4
Instructor: Markus Püschel

Pg 2 of 7 Computer Science
ETH Zurich

iterations of i. Thus, there will be n− 1 conflict misses and n compulsory misses when accessing

B in total. The miss rate is therefore 2n2+2n−1
9n2 = 143

576 ≈ 0.248. The operational intensity is

I = 4n2

143·32 = 256
143·32 ≈ 0.056.

(b) Miss rate and operational intensity for n = 16.

Solution: Similarly to the previous task, array A produces 2n2 compulsory misses. For i = 0,
there will be n compulsory misses when accessing B. In this case, array B does not completely
fits in cache. In fact, there will be conflict between its first four accesses (B[0], B[16], B[32],

B[48]) and its last four accesses (B[176], B[192], B[208], B[224]). Thus, for i = 1, . . . , n−1,
there will be 8 conflict misses of array B with itself, resulting in 8(n− 1) conflict misses. Further,
for i = 4, . . . , i = 11 there will be an additional conlfict miss with array A, resulting in 8 extra

misses. The miss rate is therefore 2n2+n+8(n−1)+8
9n2 = 2n2+9n

9n2 = 656
2304 ≈ 0.285. The operational

intensity is I = 4n2

656·32 = 1024
656·32 ≈ 0.0488.

(c) Miss rate and operational intensity for n = 16 and PADDING SIZE = 5.

Solution: Array A produces the same misses as before. For i = 0, array B produces n compulsory
misses. For i = 1, the first 8 accesses of B are already evicted from cache due to conflicts
with the last 8 accesses. This will result in n conflicts misses. The same pattern repeats for

i = 2, · · · , n− 1. The miss rate is therefore 2n2+n2

9n2 = 3n2

9n2 = 1
3 ≈ 0.333. The operational intensity

is I = 4n2

3n2·32 = 4
3·32 ≈ 0.0417.

3. Rooflines (40 pt) Consider a processor with the following hardware parameters (assume 1GB = 109B):

• SIMD vector length of 256 bits.

• Two instruction ports that execute floating point operations:

– Port 0 (P0): FMA, ADD, MUL

– Port 1 (P1): FMA, ADD, MUL

Each port can issue 1 operation per cycle. Each operation has a latency of 1.

• One write-back/write-allocate cache.

• Read bandwidth from the main memory is 50 GB/s.

• Processor frequency is 2 GHz.

(a) Draw a roofline plot for the machine. Consider only double-precision floating point arithmetic.
Consider only reads. Include a roofline for when vector instructions are not used and for when
vector instructions are used.

Solution: The memory bandwidth β = 50 ·109 bytes / (2 ·109 cycles) = 25 bytes/cycle. The peak
scalar performance is πs = 4 flops/cycle, due to being capable of performing 2 FMA instructions
per cycle. Thus, the scalar operations become memory bound at I = πs/β = 4/25 = 0.16
flops/byte. A SIMD vector of 256 bits can fit 256/64 = 4 double precision floating point numbers,
so the peak vector performance grows fourfold: πv = 16 flops/cycle. Thus, the vector operations
become memory bound at I = πs/β = 16/25 = 0.64 flops/byte.

263-0007-00 SS21 / Assignment 4
Instructor: Markus Püschel

Pg 3 of 7 Computer Science
ETH Zurich

0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

1

2

4

8

16

32

I = W/Q (flops/byte)

P
=
W
/
T

(fl
op

s/
cy

cl
e)

Roofline plot:

Scalar roofline comp1-2 scalar comp3 scalar/vector
Vector roofline comp1-2 vector

(b) Compute a hard upper bound on the operational intensity I of the functions below based on
compulsory misses. Based on this I alone, i.e. ignoring instruction mix, add the maximum per-
formance of each function to the roofline plot assuming first that vector instructions are not used
(three dots). Then, assume that vector instructions are used to speedup the computations and
add their new maximum performance (three additional dots). At the end, there should be six
dots in the roofline. Consider only reads, cold-cache scenario, only compulsory misses. Ignore
the effects of aliasing and assume that no optimizations that change operational intensity are
performed (the computation stays as is).

1 void comp1(double *x, double *y, double c, int n) {

2 for (int i = 0; i < n; i++) {

3 x[i] += y[i] + c * y[i + 32];

4 }

5 }

1 void comp2(double *x, double *y, double c, int n) {

2 for (int i = 0; i < n; i++) {

3 x[i] += y[i] + c + y[i + 32];

4 }

5 }

1 void comp3(double *A , double *u, double *v, int n) {

2 const int r = 3;

3 for (int i = 0; i < r; i++) {

4 for (int j = 0; j < n; j++) {

5 A[i * n + j] += u[j] * v[j];

6 }

7 }

8 }

Solution:
(The performance dots have been placed on the plot in (a)).

263-0007-00 SS21 / Assignment 4
Instructor: Markus Püschel

Pg 4 of 7 Computer Science
ETH Zurich

Scalar:

• comp1: With I = 3 flops / 16 bytes = 0.1875 flops/byte, we reach the peak scalar performance
P = 4 flops/cycle.

• comp2: Same as above.

• comp3: With I = 6n flops / (24 + 16)n bytes = 0.15 flops/byte, we reach P = 3.75 flops/cycle.

Vectorized:

• comp1: With vectorization, we now achieve P = 4.6875 flops/cycle.

• comp2: Same as above.

• comp3: We reach P = 3.75 flops/cycle, same as prior to vectorization. The operational
intensity is too low to benefit from vector instructions.

(c) Now, derive a hard upper bound on the performance of each function based on the instruction
mix and compulsory misses. Again, assume that no optimizations that change operational in-
tensity are performed, and FMAs are used to fuse an addition with a multiplication whenever
applicable. For readability, place the new performance dots on a separate roofline plot (there
should be six dots).

Solution:
Scalar:

• comp1: We can only reach 3 flops/cycle (1 FMA and 1 ADD per cycle).

• comp2: We can only reach 2 flops/cycle (2 ADDs per cycle).

• comp3: The maximal performance does not change.

In the vectorized versions, the maximal performances remain the same as in the previous subtask.

0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12

1

2

4

8

16

32

I = W/Q (flops/byte)

P
=
W
/T

(fl
op

s/
cy

cl
e)

Roofline plot:

Scalar roofline comp1 scalar comp1-2 vector

Vector roofline comp2 scalar comp3 scalar/vector

(d) How will the operational intensity and performance of comp3 change if we increase r (i.e. if we
manually assign higher values to r in line 2)? What is the best possible performance of comp3

when increasing r and when implemented with and without vector instructions?

263-0007-00 SS21 / Assignment 4
Instructor: Markus Püschel

Pg 5 of 7 Computer Science
ETH Zurich

Solution: The operational intensity will increase alongside with r. Assuming that we have
infinitely large cache, as r grows, we approach I of value:

lim
r→∞

2rn

8rn+ 16n
=

1

4
= 0.25flops/byte

With this operational intensity, the performance becomes compute bound when using scalar in-
structions yielding a performance of 4 flops/cycle. With vector instructions the performance is
6.25 flops/cycle.

4. Cache Miss Analysis (20 pts)

Consider the following computation that performs the matrix multiplication of a triangular matrix A
with a square matrix B of size n× n. This computation is illustrated in Figure 1;

1 void mmm_triangular(double *A, double *B, double *C, int n) {

2 for(int i = 0; i < n; i++)

3 for(int j = 0; j < n; j++)

4 for(int k = i; k < n; k++)

5 C[n*i + j] += A[n*i + k] * B[n*k + j];

6 }

* =

Figure 1: MMM with triangular matrix.

Assume that the code is executed on a machine with a write-back/write-allocate fully-associative cache
with blocks of size 64 bytes, a total capacity of γ = 8KiB and with a LRU replacement policy. Assume
that γ << n.

(a) Calculate the total number of cache misses that this computation has. You can ignore lower order
terms. Show your work.

Solution: Line 5 in the code is executed n2(n+1)
2 ≈ n3

2 times. The accesses to A will benefit from
spatial locality. Thus, only 1

8 of its accesses will be misses. Array B is accessed by column; thus,
there is no spacial locality and every access will be a miss. Finally, array C will benefit from
temporal locality in the innermost loop. Thus, the cache misses from C will be O(n2). The total

number of cache misses is 1
8 ·

n3

2 + 1 · n
3

2 +O(n2) ≈ 9n3

16 .

Now assume that we use blocking to improve the locality of the computation. For this case, we tile
the matrices using blocks of size b × b and some triangular blocks in the diagonal of matrix A. b is
divisible by 8. Figure 2 shows the strategy used. Answer the following. Show enough details so we can
see your reasoning.

* =

b

Figure 2: MMM with triangular matrix after blocking.

263-0007-00 SS21 / Assignment 4
Instructor: Markus Püschel

Pg 6 of 7 Computer Science
ETH Zurich

(b) Based on the characteristics of the machine, determine a suitable value of b that improves locality,
i.e. that reduces cache misses.

Solution: There are two option:

i. We choose to fit a block of A, a block of B, and a block of C in cache. In this case we have
that 3b2 ≤ γ, which results in b ≤ 18.5. We choose b = 16 to be block aligned.

ii. Following the slides of the course (linear-algebra-MMM, p.21), we can give a closer analysis
of the working set needed. In this case, we choose to fit a complete block of B, two row of
A and one row plus one element of C. This is to take into account LRU replacement policy.

Thus, d b
2

8 e+ 3d b8e+ 1 ≤ γ
8 , which yeilds b ≤ 30. We choose b = 24 to be block aligned.

(c) Calculate the total number of cache misses that this computation has when using blocking. You
can ignore lower order terms.

Solution: Similar to task a), there are
(n
b)

3

2 matrix multiplications that are performed using
blocks. We simply have to determine now the number of misses required to bring the blocks
needed in each blocked matrix multiplication. For the two options of blocking mentioned in b):

i. We need to bring the block of A and B, the block of C will be reused due to temporal locality

and becomes a lower order term. Loading a block produces b2

8 misses. Thus, the number of

misses is 2b2

8 ·
(n
b)

3

2 = n3

8b

ii. This case is similar, but now there is no reuse in C for the next blocked matrix multiplication.

Thus, the number of cache misses is 3b2

8 ·
(n
b)

3

2 = 3n3

16b

263-0007-00 SS21 / Assignment 4
Instructor: Markus Püschel

Pg 7 of 7 Computer Science
ETH Zurich

