
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Advanced Systems Lab
Spring 2020
Lecture: Dense linear algebra, LAPACK/BLAS, ATLAS, fast MMM

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, Bojan Karlas, several more

Overview

 Linear algebra software: the path to fast libraries, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 Fast MMM

 Algorithms

 ATLAS

 model-based ATLAS

2

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up much of the numerical computation across disciplines
(sciences, computer science, engineering)

 Efficient software is extremely relevant

3

The Path to Fast Libraries

 EISPACK and LINPACK (early 1970s)
 Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart

 LINPACK still the name of the benchmark for the TOP500 (Wiki) list of
most powerful supercomputers

 Matlab: Invented in the late 1970s by Cleve Moler

 Commercialized (MathWorks) in 1984

 Motivation: Make LINPACK, EISPACK easy to use

 Matlab uses linear algebra libraries but can only call it if you operate
with matrices and vectors and do not write your own loops

 A*B (calls MMM routine)

 A\b (calls linear system solver)

4

http://www.netlib.org/eispack/
http://www.netlib.org/linpack/
http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

The Path to Fast Libraries

 EISPACK/LINPACK Problem:
 Implementation vector-based = low operational intensity

(e.g., MMM as double loop over scalar products of vectors)

 Low performance on computers with deep memory hierarchy
(became apparent in the 80s)

5

The Path to Fast Libraries

 LAPACK (late 1980s, early 1990s)
 Redesign all algorithms to be “block-based” to increase locality

 Jim Demmel, Jack Dongarra et al.

 Two-layer architecture

 Basic Linear Algebra Subroutines (BLAS)

 BLAS 1: vector-vector operations (e.g., vector sum)

 BLAS 2: matrix-vector operations (e.g., matrix-vector product)

 BLAS 3: matrix-matrix operations (e.g., MMM)

 LAPACK uses BLAS 3 as much as possible

6

LAPACK

BLAS

static higher level functions

kernel functions implemented for each computer

cache
size

Now there is implementation
effort for each processor!

http://www.netlib.org/lapack/
http://www.netlib.org/blas/blasqr.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Reminder: Why is BLAS3 so important?

 Using BLAS 3 (instead of BLAS 1 or 2) in LAPACK
= blocking
= high operational intensity I
= high performance

 Remember (blocking MMM):

*=

*=

7

8

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Small Detour: MMM Complexity?

 Usually computed as C = AB + C

 Cost as computed before

 n3 multiplications + n3 additions = 2n3 floating point operations

 = O(n3) runtime

 Blocking

 Increases locality

 Does not decrease cost

 Can we reduce the op count?

9

Strassen’s Algorithm
 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische

Mathematik 13, 354-356, 1969
Until then, MMM was thought to be Θ(n3)

 Recurrence for flops:

 T(n) = 7T(n/2) + 9/2 n2 = 7nlog
2

(7) – 6n2 = O(n2.808)

 Later improved: 9/2 → 15/4

 Fewer ops from n = 654, but …

 Structure more complex → runtime crossover much later

 Numerical stability inferior

 Can we reduce more?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

MMM: 2n3/(Cost Strassen)

log2(n)

crossover: 654

10

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

MMM Complexity: What is known

 Coppersmith, D. and Winograd, S.: "Matrix Multiplication via
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990

 Makes MMM O(n2.376)

 Current best: O(n2.373)

 But unpractical

 MMM is obviously Ω(n2)

 It could well be close to Θ(n2)

 Practically all code out there uses 2n3 flops

 Compare this to matrix-vector multiplication:
 Known to be Θ(n2) (Winograd), i.e., boring

11

The Path to Fast Libraries (continued)

 ATLAS (late 1990s, inspired by PhiPAC): BLAS generator

 Enumerates many implementation variants (blocking etc.) and picks
the fastest (example): advent of so-called autotuning

 Enables automatic performance porting

 Most important: BLAS3 MMM generator

12

LAPACK

BLAS

static higher level functions

kernel functions implemented for each computer

LAPACK

BLAS

static higher level functions

kernel functions generated for each computer

http://math-atlas.sourceforge.net/
http://www1.icsi.berkeley.edu/~bilmes/phipac/
atlas-generated.c

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

ATLAS Architecture

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)

NR
MulAdd

L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Hardware parameters:
• L1Size: size of L1 data cache
• NR: number of registers
• MulAdd: fused multiply-add available?
• L* : latency of FP multiplication

Search parameters:
• for example blocking sizes
• span search space
• specify code
• found by orthogonal line search

source: Pingali, Yotov, et al., Cornell U. 13

ATLAS

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

Model-Based ATLAS (2005)

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

• Search for parameters replaced by model to compute them
• Much faster + provides understanding of what parameters are found

source: Pingali, Yotov, et al., Cornell U. 14

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Optimizing MMM

 References:

R. Clint Whaley, Antoine Petitet and Jack Dongarra, Automated Empirical
Optimization of Software and the ATLAS project, Parallel Computing, 27(1-
2):3-35, 2001

K. Goto and R. van de Geijn, Anatomy of high-performance matrix
multiplication, ACM Transactions on mathematical software (TOMS), 34(23),
2008

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings
of the IEEE, 93(2), pp. 358–386, 2005.

Our presentation is based on this paper
15

0: Starting Point

 Most important in practice (based on usage in LAPACK)

 Two out of N, M, K are small

 One out of N, M, K is small

 None is small (e.g., square matrices)
16

Standard triple loop
// Computes c = c + ab
for i = 0:N-1

for j = 0:M-1
for k = 0:K-1
c_ij = c_ij + a_ik*b_kj

* =
a

b

c

cij
row i

column j

k
k

Matlab-style
code notation

http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated%20Empirical%20Optimization%20of%20Software%20and%20the%20ATLAS%20project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://dl.acm.org/citation.cfm?id=1356053
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is%20search%20really%20necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

1: Loop Order

i-j-k: B is reused, good if M < N (B is smaller than A)

j-i-k: A is reused, good if N < M

Other options are inferior, e.g., k-i-j:

17

// Computes C = C + AB
for i = 0:N-1

for j = 0:M-1
for k = 0:K-1
c_ij = c_ij + a_ik*b_kj

* =
A

B

C

cij
row i

column j

i,j,k loops can be permuted in any order!

=
Poor temporal
locality w.r.t. C

ATLAS does versioning
(code for both variants)

N

M

2: Blocking for Cache

18

* =
NB Like multiplying matrices

consisting of size NB x NB entries
Assume NB|M,N,K

for i = 0:NB:N-1
for j = 0:NB:M-1
for k = 0:NB:K-1

for i’ = i:i+NB-1
for j’ = j:j+NB-1

for k’ = k:k+NB-1
c_i’j’ = c_i’j’ + a_i’k’*b_k’j’

Results in six-fold loop
Formally obtained through loop-tiling and loop exchange

mini-MMMs

How to find the best NB?
ATLAS: uses search over all NB

2 ≤ C1 (cache size)
Model: explained next

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

2: Blocking for Cache

19

a) Idea: Working set has to fit into cache
Easy estimate: | working set | = 3 NB

2

Model: 3 NB
2 ≤ C1

b) Closer analysis of working set:

c) Take into account cache block size B1:

* = NB

NB

a b c

all of b
row of a

element of c a mini-MMM

2: Blocking for Cache

20

d) Take into account LRU replacement
Build a history of accessed elements * =

a b c

i=0:

i=0

(j=0)
(j=1)

(j=NB-1)

Corresponding history:

Observations:
• All of b has to fit for next iteration (i = 1)
• When i = 1, row 1 of a will not cleanly replace row 0 of a
• When i = 1, elements of c will not cleanly replace previous elements of c

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

2: Blocking for Cache

21

d) Take into account LRU replacement

* =
a b c

i=0

History (i = 0):

Observations:
• All of b has to fit for next iteration (i = 1)
• When i = 1, row 1 of a will not cleanly replace row 0 of a
• When i = 1, elements of c will not cleanly replace previous elements of c

This has to fit:
• Entire b
• 2 rows of a
• 1 row of c
• 1 element of c

2: Blocking for Cache

22

e) Take into account blocking for registers (next optimization)

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

3: Blocking for Registers

23

Blocking mini-MMMs into micro-MMMs for registers revisits the
question of loop order:

* =
i-j-k:

k-i-j:
* =

For fixed i,j: 2n operations
• n independent mults
• n dependent adds

For fixed k: 2n2 operations
• n2 independent mults
• n2 independent adds

Better ILP
(but larger working set)

Result: k-i-j loop order for micro-MMMs

3: Blocking for Registers

24

for i = 0:NB:N-1
for j = 0:NB:M-1

for k = 0:NB:K-1
for i’ = i:MU:i+NB-1
for j’ = j:NU:j+NB-1

for k’ = k:KU:k+NB-1
for k” = k’:k’+KU-1
for i” = i’:i’+MU-1

for j” = j’:j’+NU-1
c_i”j” = c_i”j” + a_i”k”*b_k”j”

mini-MMM

micro-MMM

NB

NBmini-MMM
micro-MMM

are multiplied

NU

MU

KU

How to find the best MU, NU, KU?
ATLAS: uses search with bound

Model: Use largest MU, NU that satisfy
this equation and MU ≈ NU

x

size of working set in x

number of
registers

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

4: Basic Block Optimizations

25

for i = 0:NB:N-1
for j = 0:NB:M-1

for k = 0:NB:K-1
for i’ = i:MU:i+NB-1
for j’ = j:NU:j+NB-1

for k’ = k:KU:k+NB-1
for k” = k’:k’+KU-1
for i” = i’:i’+MU-1

for j” = j’:j’+NU-1
c_i”j” = c_i”j” + a_i”k”*b_k”j”

mini-MMM

micro-MMM

1

2

Unroll micro-MMMs
Scalar replacement
Loads from c (MUNU many) at
Loads from a and b (MU + NU many) at
Requires MU + NU + MUNU scalar variables

Example of ATLAS-generated code

1
2

5: Other optimizations

 Skewing: separate dependent add-mults for better ILP

 Software pipelining: move load from one iteration to previous
iteration to high load latency (a form of prefetching)

 Buffering to avoid TLB misses (later)

26

atlas-generated.c

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Remaining Details

 Register renaming and the refined model for x86

 TLB-related optimizations

27

Dependencies

 Read-after-write (RAW) or true dependency

 Write after read (WAR) or antidependency

 Write after write (WAW) or output dependency

r1 = r3 + r4
r2 = 2r1

W
R

nothing can be done
no ILP

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

r1 = r2 + r3
…
r1 = r4 + r5

W

W

dependency only by
name → rename

r1 = r2 + r3
…
r = r4 + r5

now ILP

28

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Resolving WAR by Renaming

Renaming can be done at three levels:

 C source code (= you rename): use SSA style (next slide)

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

29

Scalar Replacement + SSA

 How to avoid WAR and WAW in your basic block source code

 Solution: Single static assignment (SSA) code:

 Each variable is assigned exactly once

<more>
s266 = (t287 - t285);
s267 = (t282 + t286);
s268 = (t282 - t286);
s269 = (t284 + t288);
s270 = (t284 - t288);
s271 = (0.5*(t271 + t280));
s272 = (0.5*(t271 - t280));
s273 = (0.5*((t281 + t283) - (t285 + t287)));
s274 = (0.5*(s265 - s266));
t289 = ((9.0*s272) + (5.4*s273));
t290 = ((5.4*s272) + (12.6*s273));
t291 = ((1.8*s271) + (1.2*s274));
t292 = ((1.2*s271) + (2.4*s274));
a122 = (1.8*(t269 - t278));
a123 = (1.8*s267);
a124 = (1.8*s269);
t293 = ((a122 - a123) + a124);
a125 = (1.8*(t267 - t276));
t294 = (a125 + a123 + a124);
t295 = ((a125 - a122) + (3.6*s267));
t296 = (a122 + a125 + (3.6*s269));
<more>

no duplicates

30

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Resolving WAR by Renaming

Renaming can be done at three levels:

 C source code (= you rename)

 Compiler: Uses a different register upon register allocation, r = r6

 Hardware (if supported): dynamic register renaming

 Requires a separation of architectural and physical registers

 Requires more physical than architectural registers

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

31

Register Renaming

 Hardware manages mapping architectural → physical registers

 Each logical register has several associated physical registers

 Hence: more instances of each ri can be created

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by
dynamically resolving WAR/WAW dependencies

r1

r2

r3

rn

ISA
architectural (logical) registersphysical registers

32

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Micro-MMM Standard Model

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2)

 Core (NR = 16): MU = 2, NU = 3

 Code sketch (KU = 1)

● =

a

b

c

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers
loop over k {
load a // 2 registers
load b // 3 registers
compute // 6 indep. mults, 6 indep. adds, reuse a and b

}
c[0,0] = rc1, …, c[1,2] = rc6

reuse in a, b, c

33

this parameter I did not
explain, see paper

Extended Model (x86)
 Set MU = 1, NU = NR – 2 = 14

 Code sketch (KU = 1)

● =
a b c

reuse in c

rc1 = c[0], …, rc14 = c[13] // 14 registers
loop over k {
load a // 1 register
rb = b[1] // 1 register
rb = rb*a // mult (two-operand)
rc1 = rc1 + rb // add (two-operand)
rb = b[2] // reuse register (WAR: register renaming resolves it)
rb = rb*a
rc2 = rc2 + rb
…

}
c[0] = rc1, …, c[13] = rc14

Summary:
- no reuse in a and b
+ larger tile size available for c since for b only one register is used 34

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Visualization of What Seems to Happen

35

● =

a

b

c

reuse in a, b, c

● =
a b c

reuse in c

2

3
1 14 14

2 x 3

r1

r2

r3

rn

ISA
logical registersphysical registers

r1

r2

r3

rn

rbrbrb

ISA
logical registersphysical registers

registers used

Experiments

 Unleashed: Not generated =
hand-written contributed code

 Refined model for computing
register tiles on x86

 Blocking is for L1 cache

 Result: Model-based is
comparable to search-based
(except Itanium)

graph: Pingali, Yotov, Cornell U.

ATLAS generated

36

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Remaining Details

 Register renaming and the refined model for x86

 TLB-related optimizations

37

Virtual Memory System (Core Family)

 The processor works with virtual addresses

 All caches work with physical addresses

 Both address spaces are organized in pages

 Page size: 4 KB (can be changed to 2 MB and even 1 GB in OS settings)

 Address translation: virtual address → physical address

38

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Virtual/Physical Addresses

39

Processor: virtual addresses
Caches: physical addresses
Page size = 4 KB

virtual address physical address

lsb lsb

12 12

VPN PPN

page size

L1 Cache (32 KB)

64 sets

associativity = 8

block size 64 B

set index

block offset

6
6

L1 cache lookup can start concurrently with address translation!

How would Intel (likely) increase the L1 cache size?

Address Translation

 Uses a cache called translation lookaside buffer (TLB)

 Haswell/Skylake:

 Miss Penalties:

 DTLB hit: no penalty

 DTLB miss, STLB hit: few cycles penalty

 STLB miss: can be very expensive

40

Level 1 ITLB (instructions): 128 entries
DTLB (data): 64 entries

Level 2 Shared: 1024/1536 entries (Haswell/Skylake)

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Impact on Performance

41

Repeatedly accessing a working set spread over too many pages yields TLB
misses and can result in a significant slowdown.

Example Haswell:
STLB = 1024

A computation that repeatedly accesses a working set of 2048 doubles spread
over 2048 pages will cause STLB misses.

How much space will this working set occupy in cache (assume no conflicts)?
2048 * 64 B = 128 KB (fits into L2 cache)

Example MMM

We are looking for parts in the working set that are spread out in memory:

 Block row of a: contiguous

 All of b: contiguous

 Block of c: if M > 512, then spread over NB pages

Typically, NB is in the 10s, so no problem

42

* =
a

b

c
N

M

K

NB
Working set at
highest level

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Example MMM, contd.

Interface BLAS function: dgemm(a, b, c, N, K, M, lda, ldb, ldc)

Leading dimensions: Enable use on matrices inside matrices

Assume lda, ldb, ldc > 512:

 Block row of a: spread over ≥ NB pages

 All of b: spread over ≥ K pages

 Block of c: Spread over ≥ NB pages

So copying to contiguous memory may pay off
43

matrices sizes leading dimensions

=

lda
ldb

ldc

Example MMM, contd.

Resulting code (sketch):

44

// all of b reused: possible copy
for i = 0:NB:N-1

// block row of a reused: possibly copy
for j = 0:NB:M-1

// block of c reused: possibly copy
for k = 0:NB:K-1

……

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Fast MMM: Principles

 Optimization for memory hierarchy

 Blocking for cache

 Blocking for registers

 Basic block optimizations

 Loop order for ILP

 Unrolling + scalar replacement

 Scheduling & software pipelining

 Optimizations for virtual memory

 Buffering (copying spread-out data into contiguous memory)

 Autotuning

 Search over parameters (ATLAS)

 Model to estimate parameters (Model-based ATLAS)

 All high performance MMM libraries do some of these (but possibly in
slightly different ways)

45

Path to Fast Libraries

 The advent of SIMD vector instructions (SSE, 1999) made ATLAS
obsolete

 The advent of multicore systems (ca. 2005) required a redesign of
LAPACK (just parallelizing BLAS is suboptimal)

 Recently, BLAS interface needs to be extended to handle higher-order
tensor operations (used in machine learning)

 Automatic generation of blocked algorithms, alternatives to LAPACK
(FLAME)

 Program generator for small linear algebra operations
(SLinGen/LGen)

46

LAPACK

BLAS

static higher level functions

kernel functions generated for each computer

https://www.cs.utexas.edu/~flame/web/
https://acl.inf.ethz.ch/research/LGen/

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2020

Lessons Learned

 Implementing even a relatively simple function with optimal performance
can be highly nontrivial

 Autotuning can find solutions that a human would not think of
implementing

 Understanding which choices lead to the fastest code can be very difficult

 MMM is a great case study, touches on many performance-relevant issues

 Most domains are not studies as carefully as dense linear algebra

47

