
On Approximate Elimination

Kyng, Spielman

March 9, 2020

Contents

1 Preliminaries 2

1.1 Linear Algebra . 2

1.2 Matrix Classes . 3

1.3 Solutions to Linear Equations . 3

1.3.1 Preconditioned Iterative Refinement for Positive Semi-Definite Matrices . . . 4

1.3.2 Schur Complements . 4

1.3.3 Gaussian Elimination, Cholesky Factorization, and LU-decomposition 5

1.3.4 Schur Complements and Closure . 7

1.3.5 The Clique Structure of Schur Complements 7

2 Edgewise Elimination 8

2.1 Eliminating a vertex, one edge at a time . 9

2.2 Sampled Edgewise Elimination . 10

2.3 Another View: Single Lower-triangular Factor . 11

2.4 Computing a Full Approximate Factorization . 11

Overview

I’m going to write up notes on the version of Approximate Cholesky Elimination that is implemented
in Laplacians.jl. It is in turn based on the observation that elimination can proceed edgewise as in
the nearly linear-time directed Laplacian solver of mine, which Dan and I wanted to find a way to
use on undirected Laplacians. And of course, it’s very related to the original Approximate Gaussian
Elimination paper of Sushant and I. Note that the code in Laplacians.jl is based on Section 2.1,
but it might be better to used the alternative form given in Section 2.3.

1

1 Preliminaries

1.1 Linear Algebra

All of this dissertation concerns questions in theoretical computer science that draw heavily on
linear algebra. Below we introduce some basic notation and definitions that will be used in later
chapters.

Upper and Lower Triangular Matrices. We say a square matrix U is upper triangular if it
has non-zero entries U(i, j) 6= 0 only for i ≤ j (i.e. above the diagonal). Similarly, we say a
square matrix L is lower triangular if it has non-zero entries U(i, j) 6= 0 only for i ≥ j (i.e.
below the diagonal). Often, we will work with matrices that are not upper or lower triangular,
but which for we know a permutation matrix P s.t. PUP> is upper (respectively lower)
triangular. For computational purposes, this is essentially equivalent to having a upper or
lower triangular matrix, and we will refer to such matrices as upper (or lower) triangular.
The algorithms we develop for factorization will always compute the necessary permutation.

Moore-Penrose Pseudo-inverse. We use B† to denote the Moore-Penrose pseudo-inverse of a
matrix B .

Positive Definite Matrices and Positive Semi-Definite Matrices. We say a square matrix
M ∈ Rn×n is positive definite if for all x ∈ Rn where x 6= 0, we have x>Mx > 0. If for all
x ∈ Rn where x 6= 0, we have x>Mx ≥ 0, then M is positive semi-definite (PSD).

Loewner Order. We use � to denote a partial order on symmetric matrices, where A � B if and
only B −A is PSD.

Restriction. Given an m×n matrix B , and index sets F ⊆ [m], C ⊆ [n], we use (B)FC to denote
the |F | × |C| matrix obtained by restricting B to the rows F and the columns C. When it
does not cause ambiguity, we will sometimes omit the brackets and write BFC to denote the
matrix (B)FC .

Projection Matrix Given matrix B ∈ Rm×n, let ΠB
def
= B(BB>)†B>, i.e. the orthogonal

projection onto the image of B .Note that ΠB = Π>B and ΠB = Π2
B .

Norms from Quadratic Forms. For any PSD matrix M and any vector v , define the semi-norm

‖v‖M
def
=
√
v>Mv .

Kernel and Cokernel. Given a matrix M , we use ker(M) to denote the kernel of M , i.e. the
subspace of vectors x s.t. Mx = 0. The term cokernel refers to the kernel of M>.

Let 1 ∈ Rn denote the all ones vector, with dimension n that will always be made clear in the
context of its use. Similarly, we let 0 denote the all zero vector or matrix, depending on context.

The following fact is useful, since we often need to apply the pseodo-inverse of a matrix.

Fact 1.1 (Pseudo-inverse of a product). Suppose M = ABC is square real matrix, where A and
C are non-singular. Then

M † = ΠMC−1B†A−1ΠM> .

2

Definition 1.2 (PSD Spectral Approximation). Given two PSD matrices A and B and a scalar
ε ≥ 0, we say A ≈ε B if and only if

exp(−ε)A � B � exp(ε)A.

We say A is an ε-approximation of B .

1.2 Matrix Classes

In this section, we introduce several families of matrices. Each is significant, because we are able
to construct fast linear system solvers for matrices in these classes.

Symmetric Diagonally Dominant (SDD) Matrices. A matrix M ∈ Rn×n is said to be
Symmetric Diagonally Dominant (SDD), if it is symmetric and for each row i,

M (i, i) ≥
∑
j 6=i
|M (i, j)| . (1)

It can be shown that every SDD matrix is positive semi-definite.

Undirected Laplacians, a.k.a. Laplacians. We consider a connected undirected multi-graph
G = (V,E), with positive edges weights w : E → R+. Let n = |V | and m = |E|. We label vertices
1 through n, s.t. V = {1, . . . , n}. Let χi denote the ith standard basis vector. Given an ordered
pair of vertices (u, v), we define the pair-vector bu,v ∈ Rn as bu,v = χv − χu. For a multi-edge e,
with endpoints u, v (arbitrarily ordered), we define be = bu,v.

By assigning an arbitrary direction to each multi-edge of G we define the Laplacian of G as L =∑
e∈E w(e)beb

>
e . Note that the Laplacian does not depend on the choice of direction for each edge.

Given a single multi-edge e, we refer to w(e)beb
>
e as the Laplacian of e.

A weighted multi-graph G is not uniquely defined by its Laplacian, since the Laplacian only depends
on the sum of the weights of the multi-edges on each edge. We want to establish a one-to-one
correspondence between a weighted multi-graph G and its Laplacian L, so from now on, we will
consider every Laplacian to be maintained explicitly as a sum of Laplacians of multi-edges, and we
will maintain this multi-edge decomposition as part of our algorithms.

Fact 1.3. If G is connected, then the kernel of the corresponding Laplacian L is the span of the
vector 1.

1.3 Solutions to Linear Equations

For Laplacian solvers, the approximation error of an approximate solution x to a system Lx = b
is measured by the ε s.t. ∥∥∥x̃ − L†b

∥∥∥
L
≤ ε

∥∥∥L†b∥∥∥
L
.

A key tool in iterative methods is preconditioners. Given a linear equation Ax = b in a square
matrix A, a preconditioner for A is a matrix that in some sense approximates A, but is easier to

3

invert. In iterative methods, if we can compute a preconditioner for the matrix, we usually replace
the condition number dependence in the running time of the iterative method with a dependence
on the approximation quality between A and the preconditioner, at the cost of having to apply the
inverse of the preconditioner.

1.3.1 Preconditioned Iterative Refinement for Positive Semi-Definite Matrices

We briefly introduce Preconditioned Iterative Refinement [Hig02, Chapter 12] to solve the system
Ax = b, where A ∈ Rn×n and b ∈ Rn. Suppose Z is a preconditioner for A. Preconditioned
Iterative Refinement refers to the procedure which computes the iterates below.

x (0) = 0, x (i+1) = x (i) − Z †(Ax (i) − b),

We use PreconIterRefinement(A,Z , ε, b) to denote the routine which performs preconditioned
iteration refinement as described above, to compute and return x (t), with t = 3 log 1

ε .

Theorem 1.4. Consider a positive semi-definite matrix A ∈ Rn×n and a vector b ∈ Rn. Suppose Z
is a linear operator s.t. Z ≈1/2 A. Then for all 0 < ε ≤ 1/2, PreconIterRefinement(A,Z , ε, b)

returns x (t), where t =
⌈
3 log 1

ε

⌉
, s.t.

∥∥x (t) −A†b
∥∥
A
≤ ε

∥∥A†b∥∥
A

.

1.3.2 Schur Complements

Gaussian Elimination is a classical algorithm for solving systems of linear equations. It is closely
related to the notion of Schur Complements, which we introduce in this section. Suppose M ∈ Rn×n
is a square matrix and F,C ⊂ [n] is a partition of [n] into two sets. W.l.o.g. taking F to be the
first |F | indices of [n], we can write

M =

(
M F,F M F,C

M C,F M C,C

)
.

When M F,F is invertible, we define the Schur complement of M onto C as

Sc[M]C
def
= M C,C −M C,F (M F,F)−1M F,C .

The Schur complement is related to inverses and the LDU decompositions of a matrix. One way
to see this is through the blockwise LDU decomposition of a matrix

M =

(
I 0

M C,FM
−1
F,F I

)(
M F,F 0

0 Sc[M]C

)(
I M−1

F,FM F,C

0 I

)
This also implies that when M is invertible,

M−1 =

(
I −M−1

F,FM F,C

0 I

)(
M−1

F,F 0

0 Sc[M]−1
C

)(
I 0

−M C,FM
−1
F,F I

)
=

(
M−1

F,F + M−1
F,FM F,CSc[M]−1

C M C,FM
−1
F,F −M−1

F,FM F,CSc[M]−1
C

−Sc[M]−1
C M C,FM

−1
F,F Sc[M]−1

C

)
.

4

This in turn implies immediately that

(M−1)C,C = Sc[M]−1
C .

Suppose that C2 ⊆ C1 ⊆ [n]. Then

Sc[M]C2
= Sc

[
Sc[M]C1

]
C2
.

This follows from noting that (M−1)C2,C2 = ((M−1)C1,C1)C2,C2 and then inverting both matrices.

This in turn tells us that we can compute Schur Complements in stepwise manner, first Schur
complementing onto n − 1 variables (eliminating only one variable), then Schur complementing
onto n − 2 of the remaining variables etc. This also holds when M is not invertible, but we omit
the proof. Our proof still requires that the matrix on indices F = [n] \ C2, denoted by M F,F , is
invertible.

The blockwise LDU decomposition can also be written as a sum of the zero-padded Schur comple-
ment and a term that agrees with M on all except the M C,C block.

M =

(
M F,F M F,C

M C,F M C,FM
−1
F,FM F,C

)
+

(
0 0
0 Sc[M]C

)

Fact 1.5 (Schur Complements and Pseudo-Inverses). Suppose L is an undirected Laplacian. Let

S = Sc[L]†C . Then ΠS (L†)C,CΠS = Sc[L]†C .

Claim 1.6. Consider n × n Laplacians A,B � 0, s.t. for some 0 < ε < 1 we have A ≈ε B . Let
F ⊆ [n]. Then

Sc[A]F ≈ε Sc[B]F .

1.3.3 Gaussian Elimination, Cholesky Factorization, and LU-decomposition

An LU-decomposition of a square matrix M ∈ Rn×n is a factorization M = LU , where L is
a lower-triangular matrix and U is an upper-triangular matrix, both up to a permutation (see
Section 1.1).

When M is non-singular, linear equations Ly = b and Ux = y and be solved by forward and
backward substitution algorithms respectively (e.g. see [TBI97]), which run in time O(nnz(L)) and
O(nnz(U)). I.e. L−1 and U−1 can be applied in time proportional to the number of non-zeros in L
and U respectively. This means that if a decomposition L,U of M is known, then linear systems
in M be solved in time O(nnz(L) + nnz(U)), since Mx = b implies x = U−1L−1b.

When M is singular the same forward and backward substitution algorithms can be used to compute
the pseudo-inverse, in some situations. We focus on a special case where we can instead factor M
as M = L′DU ′, where D is singular and L′, U ′ are non-singular.

For the case of interest to us, Undirected Laplacians of connected graphs, this slightly modified
factorization can be trivially obtained from an LU-decomposition, by L′ equal to L except L(n, n) =
1 and U ′ equal to U except U(n, n) = 1 and taking D to be the identity matrix, except D(n, n) = 0.

Now, by Fact 1.1,
M † = ΠML′−1D†U ′−1ΠM> .

5

For connected Laplacians, the kernel and co-kernel are always the span of the 1 vector, so we can
apply ΠM and ΠM> efficiently.

Gaussian Elimination is an algorithm that can be used to compute an LU-decomposition of some
matrices. Gaussian Elimination proceeds by writing M as the sum of a rank 1 term that agrees
with M on the first row and column and a (zero-padded) Schur complement:

As a convenient notational convention, we define S (0) def
= M , the “0th” Schur complement. We

then define

l i = (S (i−1)(i, i)1/2)−1S (i−1)(:, i)

u>i = (S (i−1)(i, i)1/2)−1S (i−1)(i, :)

S (i) = S (i−1) − l iu
>
i , (2)

unless S (i−1)(i, i) = 0, in which case we define S (i) = S (i−1), if S (i−1)(:, i) = 0 and S (i−1)(i, :) = 0.
We do not define the Schur complement when the diagonal is zero but off-diagonals are not. By
setting

L =
(
l1 l2 · · · ln

)
and

U> =
(
u1 u2 · · · un

)
we get an LU-decomposition M = LU .

It can be shown that Gaussian Elimination as described above always produces an LU-
decomposition when applied an Undirected Laplacian. For some other classes of matrices, it does
not always succeed (e.g. if the first column has a zero diagonal but other non-zero entries).

When M is a positive semi-definite matrix, it can be decomposed as M = LL>, i.e. an LU
decomposition where the upper triangular matrix is the transpose of the lower triangular matrix.
This special case is known as a Cholesky factorization. When the Gaussian Elimination algorithm
described above is applied to a Laplacian matrix it computes the Cholesky factorization.

Definition 1.7 (Partial LU-decomposition and Partial Cholesky Factorization). If Gaussian Elim-
ination is terminated after k steps (see Equation (2)), we get a decomposition where

L =
(
l1 l2 · · · lk

)
and

U> =
(
u1 u2 · · · uk

)
s.t. M = S (k) + LU , where S (k) is zero except on indices in C × C where C = {k + 1, . . . , n} and
(S (k))C,C = Sc[M]C . Letting F = [n] \ C, this decomposition can also be written as

M =

(
LC,F 0
LC,F I

)(
I 0

0 (S (k))C,C

)(
I UF,C

0 UC,C

)

We refer to L,U ,S as a partial LU-decomposition to set C, and when M is positive semi-definite,
so L = U>, we refer to L,S as a partial Cholesky factorization to set C.

6

Definition 1.8 (Approximate Cholesky Factorization and Partial Cholesky Factorization). We
refer to L as an ε-approximate Cholesky factorization of a matrix M if L is a Cholesky factorization
of a matrix M̃ s.t. M̃ ≈ε M .

We refer to L,S as an ε-approximate partial Cholesky factorization to a set C of a matrix M if
L,S is a partial Cholesky factorization to a set C of a matrix M̃ s.t. M̃ ≈ε M .

1.3.4 Schur Complements and Closure

Some classes of matrices have the property that if M is a matrix in the class, then for any subset
C of the indices of M , the Schur complement Sc[M]C is also in that class.

This observation, combined with the fact that some classes of matrices can be well-approximated
with sparse matrices of the same class, is at the core of all the fast algorithms for solving systems
of linear equations that we develop in this dissertation.

Positive definite and positive semi-definite matrices both have the property of being closed under
Schur complement, i.e. the Schur complement of a positive definite matrix is a positive definite
matrix and the Schur complement of a positive semi-definite matrix is positive semi-definite.

Below, we state the closure property for the matrix classes that we use in this dissertation.

Fact 1.9. For each of the following classes, it holds that if M is a matrix of this class with index
set [n], then for all C ⊆ [n], Sc[L]C is a matrix of the same class.

• Positive Definite Matrices.

• Positive Semi-Definite Matrices.

• Undirected Laplacians.

1.3.5 The Clique Structure of Schur Complements

In the previous section, we introduced Schur complement closure properties for several classes of
matrices. In this section, we show how to prove the closure property for Schur complements of
Laplacians, while also observing that the Schur complement of a Laplacian onto n− 1 indices has
additional structure that will help us develop algorithms for approximating these Schur comple-
ments.

Given a Laplacian L, let St[L]v ∈ Rn×n denote the Laplacian corresponding to the edges incident
on vertex v (the star on v), i.e.

St[L]v
def
=

∑
e∈E:e3v

w(e)beb
>
e . (3)

For example, we denote the first column of L by

(
d
−aaa

)
, then St[L]1 =

[
d −aaa>

−aaa diag(aaa)

]
. We can

write the Schur complement Sc[L][n]\{v} as

Sc[L][n]\{v} = L− St[L]v + St[L]v −
1

L(v, v)
L(:, v)L(v, :).

7

It is immediate that L− St[L]v is a Laplacian matrix, since L− St[L]v =
∑

e∈E:e 63v w(e)beb
>
e . A

more surprising (but well-known) fact is that

Cl[L]v
def
= St[L]v −

1

L(v, v)
L(:, v)L(v, :) (4)

is also a Laplacian, and its edges form a clique on the neighbors of v. It suffices to show it for
v = 1. We write i ∼ j to denote (i, j) ∈ E. Then

Cl[L]1 =

[
0 0>

0 diag(aaa)− aaaaaa>

d

]
=
∑
i∼1

∑
j∼1

w(1, i)w(1, j)

d
b(i,j)b

>
(i,j).

Thus Sc[L][n]\{v} is a Laplacian since it is a sum of two Laplacians. By induction, for all C ⊆ [n],
Sc[L]C is a Laplacian.

2 Edgewise Elimination

In this section, we describe an alternative approach to factorizing a Laplacian L in terms of a
product of upper and lower triangular matrices. Ultimately, the goal is to produce an approximate
factorization LDL> of a Laplacian L, where D is diagonal and L is lower-triangular, L ≈ LDL>.

We can then get a linear equation solver for Lx = b, by using the preconditioned iterative refine-
ment described in Theorem 1.4 with A← L and Z ← LDL>. Note that in practice, the iterative
algorithm we use is Preconditioned Conjugate Gradient.

We assume we are dealing with a connected graph.

We let

L =

 d −w −aaa>

−w
(
w 0>

0 diag(aaa)

)
+ L−1−aaa


Degree-1 elimination. When eliminating a vertex of degree 1, we use w 0 0>

0
L−10

 =

 1 0 0>

1
I

0

 w −w 0>

−w
(
w 0>

0 0

)
+ L−10

 1 1 0>

0
I

0


And hence, by applying inverses of the outer matrices in the factorization, w −w 0>

−w
(
w 0>

0 0

)
+ L−10

 =

 1 0 0>

−1
I

0

 w 0 0>

0
L−10

 1 −1 0>

0
I

0


Edge elimination. When the vertex we’re in the process of eliminating has degree more than 1,
we instead apply the following factorization, where d = 1>aaa + w and θ = w/d. d(1− θ)2 0 −(1− θ)aaa>

0
(
w − w2/d −w

d aaa>

−w
d aaa diag(aaa)

)
+ L−1−(1− θ)aaa

 (5)

8

=

 1− θ 0 0>

θ
I

0

 d −w −aaa>

−w
(
w 0>

0 diag(aaa)

)
+ L−1−aaa

 1− θ θ 0>

0
I

0


Note that the matrix on the LHS is a Laplacian because d(1 − θ)2 = (1 − θ)1>aaa. And again, by
applying inverses of the outer matrices in the factorization, we have d −w −aaa>

−w
(
w 0>

0 diag(aaa)

)
+ L−1−aaa


=

 1
1−θ 0 0>

−θ
1−θ I
0

 d(1− θ)2 0 −(1− θ)aaa>
0

(
w − w2/d −w

d aaa>

−w
d aaa diag(aaa)

)
+ L−1−(1− θ)aaa

 1
1−θ

−θ
1−θ 0>

0
I

0



Schur complement invariance. We can also see that the Schur complement onto the remaining
vertices is

S = Sc

 d −w −aaa>

−w
(
w 0>

0 diag(aaa)

)
+ L−1−aaa


[n]\{1}

=

(
w − w2/d −w

d aaa>

−w
d aaa diag(aaa)− 1

daaaaaa>

)
+ L−1

= Sc

 d(1− θ)2 0 −(1− θ)aaa>
0

(
w − w2/d −w

d aaa>

−w
d aaa diag(aaa)

)
+ L−1−(1− θ)aaa


[n]\{1}

2.1 Eliminating a vertex, one edge at a time

Let us summarize these observations into a statement about how to write a factorization of L that
eliminates the first vertex, which we will now denote by vertex 0. Assume vertex 0 has degree k,
and that its neighbors are vertices 1, 2, . . . , k.

L =

(
d −aaa>

−aaa diag(aaa) + L−1

)
(6)

We denote the weight on the edges from vertex 0 to its neighbors by aaa(1),aaa(2), . . . ,aaa(k). We then
write

L = L1L2 . . .Lk

(
φ 0>

0 S

)
L>k . . .L>2 L>1 (7)

where S = Sc[L][n]\{1}, and where for i < k, we have

Li =

(
1

1−θi 0>

−θi
1−θie i I

)

where e i is the i basis vector in dimension n − 1, and θi =
aaa(i)Πj<i(1−θi)
d·Πj<i(1−θi)2 = aaa(i)

d·Πj<i(1−θi) . We can

simplify this, using the observation that Πj<i(1− θj) =
d−

∑
j<i aaa(j)

d . Hence

θi =
aaa(i)

d−
∑

j<i aaa(j)
.

9

The last factor is given by,

Lk =

(
1 0>

−ek I

)
and φ = aaa(k)Πj<k(1− θj) = aaa(k)2

d .

2.2 Sampled Edgewise Elimination

We can think of the elimination procedure described in the previous section is proceeding through
a sequence of edge eliminations as we apply partial factorization to the Laplacian. We adopt the
same notation as in Section 2.1, and define L as in Equation (6). Here L ∈ Rn×n, and aaa ∈ Rn−1.
We also define aaai ∈ Rn−1 given by

aaai(l) =

{
aaa(l) for l > i

0 for l ≤ i

These partial factorizations can be used to define an intermediate resulting fromt partial factoriza-
tion for each i < k.

L = L1L2 · · ·LiLiL>i · · ·L>2 L>1
We used Equation (5) to observe that L1 is a Laplacian, and from this we can prove by induction
that each Li is a Laplacian.

In the notation of Equation (5), the contribution of the ith edge elimination (where i < k) to S is
the Laplacian matrix

S i =
(

diag
(
aaa(i)1>aaai

d e i + aaa(i)
d aaai

)
− aaa(i)

d

(
e iaaa
>
i + aaaie

>
i

))
(8)

In other words, we can write

S = L−1 +
k−1∑
i=1

S i

We will replace this with the Laplacian of a single randomly chosen reweighted edge, s.t. in
expectation, this edge Laplacian yields S i. More generally, we choose the ith random index γi with
according to a probability distribution given by

Pr[γi = l] = pi(l) where pi(l) =
aaai(l)

1>aaai
.

We can also write this as

pi(l) =

{
aaa(l)∑
j>i aaa(j) for l > i

0 for l ≤ i
.

To make the expectations work out, if the outcome is γi = l, we then choose a weight of

w̃(i, l) =
1

pi(l)

1

d
aaa(l)aaa(i) =

aaa(i)1>aaai
d

.

and we output the single edge Laplacian

S̃ i = (e i − eγi)(e i − eγi)
>

10

We can show that Eγi

[
S̃ i

]
= S i. Now, our output will be the approximate decomposition

L̃ = L1L2 · · ·Lk

(
φ 0>

0 L−1 +
∑k−1

i=1 S̃ i

)
L>k · · ·L>2 L>1 (9)

which satisfies E
[
L̃
]

= L.

This only describes elimination of the first vertex, so now we have to eliminate the rest.

2.3 Another View: Single Lower-triangular Factor

We can prove the following:

(
0 0>

0 S

)
= L1L2 · · ·Lk

(
0 0>

0 S

)
L>k · · ·L>2 L>1 (10)

and
1

d

(
d
−aaa

)(
d
−aaa

)>
= L1L2 · · ·Lk

(
φ 0>

0 0

)
L>k · · ·L>2 L>1 (11)

To establish Equation (10), we observe that given any vector b ∈ Rn and any matrix C ∈ R(n−1)×d,
with any number of columns d, we have(

b 0>

I (n−1)×(n−1)

)(
0>

C

)
=

(
0>

C

)
.

Repeatedly applying this observation the right hand side of Equation 10 lets us conclude that it
equals the left hand side, proving the equation holds.

From the preliminaries, we know that it is possible to write

L =

(
0 0>

0 S

)
+

1

d

(
d
−aaa

)(
d
−aaa

)>
Equating this with Equation (7), simplifying by Equation (10), can subtracting

(
0 0>

0 S

)
on both

sides, we can then establish Equation (11).

By similar observations, we can express the approximate factorization in Equation (9) as

L̃ =

(
d 0>

−aaa I

)(
1/d 0>

0 L−1 +
∑k−1

i=1 S̃ i

)(
d −aaa>

0 I

)
. (12)

2.4 Computing a Full Approximate Factorization

Sections 2.1 and 2.3 described two different approaches to computing an approximate factorization
that eliminates the first variable of L, summarized in Equations (9) and (12) respectively. The
factorizations are essentially equivalent: they correspond to the same linear operator, but they
suggest two different ways to apply that operator.

In this section, we briefly remark how to repeatedly eliminate vertices to obtain a full factorization.

11

Factorization with one column per vertex. Let us see how Equation (12) can be repeatedly

applied: Let l1 =

(
d
−aaa

)
denote the first column in the lower triangular factor, and introduce

a diagonal matrix D where D(1, 1) = 1/d records the first diagonal of the middle factor. If we
recursively compute a factorization in the same way of the remaining matrix L−1 +

∑k−1
i=1 S̃ i ∈

R(n−1)×(n−1), this yields a sequence of columns l2 ∈ R(n−1), l3 ∈ R(n−2), . . . , ln ∈ R1 and diagonals
of which we may record in D s.t. if we let

L =


l1

  0
l2

  0
0
l3

 · · ·

 0...
0
ln


 (13)

Then L ≈ LDL>.

Factorization with one factor per edge elimination. Now let us see how Equation (9) can
be repeatedly applied to obtain a full factorization. Let us slightly modify the notation for the first
elimination to write

L̃ = L(1)
1 L(1)

2 · · ·L
(1)
k1

(
φ1 0>

0 L−1 +
∑k−1

i=1 S̃ i

)
(L(1)

k1
)> · · · (L(1)

2)>(L(1)
1)>,

where k1 denotes the degree of the vertex we eliminated.

Now if we recursively factor the remaining matrix L−1 +
∑k−1

i=1 S̃ i, we can eventually write

L ≈

(
Πn
i=1Πki

j=1

(
I i−1 0

0 L(i)
j

))
Φ

(
Πn
i=1Πki

j=1

(
I i−1 0

0 L(i)
j

))>
(14)

where Φ is a diagonal matrix with Φ(i, i) = φi.

Note that the many subblocks with identity matrices never lead to computations that we have to
perform. When the operators or their inverses are applied, these blocks correspond leave vector
entries unchanged.

Note also that ki is the degree of the ith vertex being eliminated, in the approximate Schur com-
plement that it is being eliminated from. I.e. it is not the original degree or the degree in the exact
Schur complement of the original Laplacian onto the remaining vertices.

References

[Hig02] Nicholas J Higham. Accuracy and stability of numerical algorithms. Siam, 2002.

[TBI97] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.

12

	Preliminaries
	Linear Algebra
	Matrix Classes
	Solutions to Linear Equations
	Preconditioned Iterative Refinement for Positive Semi-Definite Matrices
	Schur Complements
	Gaussian Elimination, Cholesky Factorization, and LU-decomposition
	Schur Complements and Closure
	The Clique Structure of Schur Complements

	Edgewise Elimination
	Eliminating a vertex, one edge at a time
	Sampled Edgewise Elimination
	Another View: Single Lower-triangular Factor
	Computing a Full Approximate Factorization

