
ETH login ID:

(Please print in capital letters)

Full name:

263-0007-00L: Advanced Systems Lab
ETH Computer Science, Spring 2020
Midterm Exam
Monday, July 08, 2020

Instructions

• Write your full name and login ID on the front.

• Make sure that your exam is not missing any sheets.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are al-
lowed.

Problem 1 (16 = 2+4+2+4+4)

Problem 2 (15 = 6+6+3)

Problem 3 (18 = 2+6+6+4)

Problem 4 (14 = 2+2+3+5+2)

Problem 5 (18 = 2+2+2+4+2+6)

Problem 6 (19 = 2+2+2+2+4+2+5)

Total (100)

1 of 14



Problem 1: Operational Intensity (16 = 2+4+2+4+4)

Consider the computation y> = (Ax)>A where x, y are column vectors of doubles of length
n and A is an n× n matrix of doubles stored in row major order. No temporary arrays are
used in this computation. sizeof(double) = 8. Make the following assumptions:

• A write-back/write-allocate and initially empty (cold) cache of size γ bytes.

• n is a multiple of the cache block of size B = 64 bytes.

• Arrays are aligned with the cache blocks.

In the derivations you can omit lower order terms (writing ≈ instead of =). Show
your work.

1. Determine the flop count W (n) of the computation.

Solution:
W (n) = 2n(2n− 1) ≈ 4n2

2. Determine an upper bound for the operational intensity I(n) of the computation con-
sidering only compulsory data movement. Consider only reads and ignore writes.

Solution:
Q(n) ≥ 8(n2 + 2n) ≈ 8n2

I(n) ≤ W (n)

Q(n)
≈ 4n2

8n2
=

1

2

3. For which sizes n would you expect the bound for I(n) calculated in 2) to be roughly
accurate (i.e., roughly equal to I(n))?

Solution:

When the entire data fits in cache.

8n2 ≤ γ

n ≤
√
γ

8

2 of 14



4. Consider now that the computation is performed on a submatrix A′ and subvector
x′ obtained by accessing A and x with a stride k. Assume that n is divisible by
k. In Matlab notation, this is equivalent to y′> = (A′x′)>A′ where A′ = A0:k:n2−1,
x′ = x0:k:n−1, and y′ = y0:k:n−1, so A′ is an n × n

k
matrix. For convenience, we also

include the code of the computation:

1 /* Arrays y and tmp are initialized with zeros */
2 void f(double *A, double * x, double *y, double *tmp, int n, int k) {
3
4 // tmp = A*x (with stride k)
5 for (int i = 0; i < n; ++i)
6 for (int j = 0; j < n; j += k)
7 tmp[i] += A[i*n + j]*x[j];
8
9 // y = tmpˆT*A (with stride k)
10 for (int j = 0; j < n; j += k)
11 for (int i = 0; i < n; ++i)
12 y[j] += tmp[i]*A[i*n + j];
13 }

Determine a new upper bound for the operational intensity I(n) for the following cases
considering only compulsory data movement. Consider only reads and ignore writes.
Briefly explain your answer.

(a) For k = 7

Solution:

The stride is less than the cache block size. Thus, Q(n) remains the same because
the complete matrix A is still read into cache. On the other hand, W (n) is reduced
by a factor of 7. Thus, I(n) ≤ 1

14
.

(b) For k = 16

Solution:

The stride is twice the cache block size. Thus, Q(n) is reduced by a factor of 2.
W (n) is reduced by a factor of 16. Thus, I(n) ≤ 1·2

2·16 = 1
16

.

3 of 14



Problem 2: Bounds for Sparse MVM (15 = 6+6+3)

We consider sparse matrix-vector multiplication, in double precision floating point, of the
form y = y+Ax where x, y are of length n and A is n×n, sparse with k non-zero elements,
and invertible. The computation is done with A in CSR (compressed sparse row) format
which, as you known, uses three arrays (values, col idx and row start) to represent
the sparse matrix. Indices are represented by (4-byte) integers.

Assume that the sparse MVM is executed on a computer with the following features:

• A cold (empty) cache with a cache block of size B = 16 bytes.

• A peak performance of 2 flops/cycle because it can execute 1 FMA/cycle.

• A read (memory) bandwidth of β bytes/cycle.

Answer the following. Show your work.

1. Compute a lower bound for the runtime and associated upper bound for the perfor-
mance based on data movements by considering only compulsory misses. Consider
only reads and ignore writes.

Solution:

Assuming compulsory misses only, everything is read once from main memory. Matrix
A has k double elements and k+n+1 integer elements. Vectors x and y have n double
elements each. A lower bound for the runtime is therefore:

runtime ≥ 8(k + 2n) + 4(k + n+ 1)

β
=

12k + 20n+ 4

β
.

For the performance:

perf ≤ 2kβ

12k + 20n+ 4
=

kβ

6k + 10n+ 2
.

2. Compute now an upper bound for the runtime and associated lower bound for the
performance based only on data movements (since the computation is assumed to be
memory bound) and assuming that all memory accesses lead to misses. Consider only
reads and ignore writes.

Solution:

Since every memory access is a miss, to get the total bytes read from main memory,
we count the number of memory accesses and multiply by the cache block (each access
will bring the whole block to cache). All elements of the three arrays of A (the non-
zero values, the column indices and the row array) are accessed once; thus, 2k + n+ 1
misses. Vectors x and y lead to k and n misses respectively. Thus:

runtime ≤ 16(3k + 2n+ 1)

β
=

48k + 32n+ 16

β
.

4 of 14



perf ≥ kβ

24k + 16n+ 8
.

3. Using the bound calculated in 1) and assuming k = 10n, determine the values of β for
which the Sparse MVM using CSR format is guaranteed to be memory bound. Show
your derivation.

Solution:

This is achieved when the performance in 1) is less than the peak performance of the
machine:

kβ

6k + 10n+ 2
≤ 2,

which leads to

β ≤ 12 +
20n+ 4

k
= 14 +

2

5n
=⇒ β ≤ 14

5 of 14



Problem 3: Cache Mechanics (18 = 2+6+6+4)

Consider a 2-way set associative cache with a block size of 16 bytes and 4 sets. The replace-
ment policy is LRU. The write policy is write-back/write-allocate. The cache is initially
cold. Consider the following code:

1 void compute(double *A) {
2 double t1;
3 for (int i = 0; i < 8; ++i) {
4 t1 = A[i*s1];
5 A[i*s2] = t1 + 2.0;
6 }
7 }

Assume that A starts at memory address 0. All memory accesses happen in exactly the
order that they appear and are inbound. Variables t1 and i are kept in registers. Answer
the following. Show your work. Hint: It helps to draw the cache.

1. What is the size of the cache in bytes?

Solution:

2 · 16 · 4 = 128 Bytes

2. For each of the following values of s1 and s2 and considering read and write misses do
the following three things: i) determine the hit/miss pattern (something like HMMHM...);
ii) draw the state of the cache after the loop has executed; iii) state what kind(s) of
locality does this execution have.

(a) s1 = 2 and s2 = 4?

Solution:

(i) MH,MM,HM,MM,HM,MM,HM,MM. Total of 12 misses.

(ii)

Set 0 1
0 A16,A17 A24,A25

1 A2,A3 A10,A11

2 A28,A29 A12,A13

3 A6,A7 A14,A15

(iii) Temporal

(b) s1 = 3 and s2 = 5?

Solution:

(i) MH,MM,MM,MM,MM,HM,MM,HM. Total of 13 misses.

(ii)

Set 0 1
0 A24,A25 A8,A9

1 A18,A19 A34,A35

2 A20,A21 A12,A13

3 A30,A31 A14,A15

(iii) Spacial and temporal.

6 of 14



3. What is the maximum number of cache misses for this code? Find a combination of
s1 and s2 that achieves this maximum with 2 ≤ s1 ≤ s2 ≤ 9 and where all misses are
compulsory misses.

Solution:

There are 16 memory accesses in total (8 reads and 8 writes). The first two accesses
are always a compulsory miss followed by a hit (temporal locality). Thus at most we
can have 15 misses. This is achieved choosing s1 = 5, s2 = 9 or s1 = 7, s2 = 9.

7 of 14



Problem 4: ILP (14 = 2+2+3+5+2)

Consider the AVX code below:

1 #include <immintrin.h>
2
3 /* Assume a, b and c are of size 4*n */
4 void f (double *a, double *b, double *c, unsigned int n) {
5 __m256d va, vb, v1, v2, v3, v4, v5;
6 size_t i;
7
8 for (i = 0; i < n; i++) {
9 va = _mm256_loadu_pd (a + 4*i);
10 vb = _mm256_loadu_pd (b + 4*i);
11
12 v1 = _mm256_add_pd (va, vb);
13 v2 = _mm256_add_pd (v1, vb);
14
15 v3 = _mm256_mul_pd (va, va);
16 v4 = _mm256_permute_pd (v3, 0x5);
17
18 v5 = _mm256_add_pd (v2, v4);
19
20 _mm256_storeu_pd (c + 4*i, v5);
21 }
22 }

Assume that the working set fits in L1 cache and is already loaded (warm cache). Fur-
ther, assume that the code is executed on a machine with the following latency, throughput,
and port information:

Instruction Latency Throughput (all ports) Port
[cycles] [instructions/cycle]

mm256 storeu pd 1 1 4
mm256 loadu pd 1 2 2/3
mm256 permute pd 2 1 5
mm256 mul pd 5 2 0/1
mm256 add pd 4 1 1

Show your derivations or briefly explain your solutions.

1. Determine the flop count W (n) of f.

Solution:

W (n) = 4 · (3× mm256 add pd + 1× mm256 mul pd) · n = 16n flops

8 of 14



2. Determine a lower bound (as tight as possible) for the runtime and an associated upper
bound for the performance of f based on the instruction mix, ignoring dependencies
between instructions (i.e., don’t consider latencies and assume full throughput).

Solution:

Additions are the bottleneck. Thus, the runtime is at least 3n and the performance is
at most 16

3
flops/cycle.

3. Estimate the runtime (latency) of one loop iteration taking latency, throughput and
dependency information into account. Hint: It may be useful to draw the DAG.

Solution:

The critical path in one iteration is 14 cycles.

4. Assume that we unroll the loop by a factor K and reorder the instructions such that
all the 2K loads occur at the beginning of the new (unrolled) loop body, followed by
the computations (4K arithmetic SIMD instructions and K permutes), and finally the
K stores. Assume that register pressure is not an issue (i.e., all loop variables can be
held in registers). Take latency, throughput and dependency information into account
and answer the following:

(a) Estimate the runtime (latency) as a function of K of one loop iteration of this
new unrolled loop.

Solution:

One iteration of the new unrolled loop takes 14 + (K − 1) = 13 + K cycles
when additions are not the bottleneck (for small K). When additions become
the bottleneck (for large K), one iteration takes 3K cycles plus 5 cycles (for
the load/stores that cannot be scheduled in parallel with additions). Thus, one
iteration takes max(13 +K, 3K + 5) cycles.

(b) Based on the latency of one iteration determined in 4a), estimate a lower bound
(as tight as possible) for the runtime of the unrolled version of f. Give the bound
as a function of K and n. Assume that n is divisible by K and that loads and
stores are always computed “in order” by the processor, meaning that a load from
one iteration cannot be scheduled before a store from a previous iteration.

Solution:

We have a total of n
K

iterations. Since loads and stores have to be executed in
order, one iterations has to be fully executed before the next starts. Thus, a lower
bound for the runtime is

runtime ≥ max (n+ 13
n

K
, 3n+ 5

n

K
).

9 of 14



Problem 5: Roofline (18 = 2+2+2+4+2+6)

Assume a computer with the following features:

• A CPU that supports single precision floating point operations. The relevant port
information is as follows:
Port 1: fma, mul, add.
Port 2: fma, mul.

• Each of these operations has a throughput of 1 per port.

• It does not support any SIMD operations.

• A write-back/write-allocate cache of size 1 MiB with cache block size B = 64 bytes.

• The read (memory) bandwidth is 4 floats per cycle. sizeof(float) = 4.

2−5

2−4

2−3

2−2

2−1

20

21

22

23

24

25

2−5 2−4 2−3 2−2 2−1 20 21 22 23 24 25

Operational Intensity [Flops / Byte]

Performance [Flops / Cycle]

10 of 14



1. Draw the roofline plot for this computer into the above graph. Annotate the lines so
we see your reasoning.

Solution:

Peak π = 4 F/C

Ba
nd

with
β
= 

16
.0
0 

B/
C

Ridge π / β= 0.25

2−5

2−4

2−3

2−2

2−1

20

21

22

23

24

25

2−5 2−4 2−3 2−2 2−1 20 21 22 23 24 25

Operational Intensity [Flops / Byte]

Performance [Flops / Cycle]

task 5

task 2

2. Consider the following code which computes the sum of three vectors x, y, and z (each
has size n). Assume that x, y, and z are allocated sequentially in memory, one after
the other, and the first element of x maps to the start of the first cache block:

1 void compute(float *x, float *y, float *z, int n){
2 for(int i=0; i < n; i++){
3 x[i] = x[i] + y[i] + z[i];
4 }
5 }

Based on the instruction mix (i.e. ignoring dependencies), which performance is max-
imally achievable for this function and why? Draw an associated tighter horizontal
roofline into the plot above. Assume that no FMA instructions are used.

Solution:

As it uses only additions, the maximum performance is 1 flops/cycle.

3. At what operational intensity I(n) does this new horizontal roofline intersect with the
memory roofline?

Solution:

Solving β · I = 1, yields 1/16 flops/byte.

11 of 14



4. Assume the cache is fully associative and compute, for the code above, an upper bound
for the operational intensity I(n) considering compulsory misses only. Based on this
I(n), which peak performance is achievable? Consider only reads (i.e., ignore write-
backs).

Solution:
W (n) = 2n, Q(n) ≥ 12n

I(n) ≤ W/Q = 1/6

The computation is compute bound. Thus, the peak achievable performance is 1
flop/cycle.

5. Assume the compiler is able to replace computation a+ b with 1 ∗ a+ b to utilise FMA
instructions. Repeat exercise 4) taking this into consideration.

Solution:

The operational intensity remains the same, but the maximum performance based on
the instruction mix is now 2 flops/cycle. Thus, π/b is now 1/8 flops/byte. The program
is still compute bound, thus the max achievable performance is 2 flops/cycle.

6. Assume the cache is directly mapped, no FMA instructions are used, and the expres-
sions are evaluated from left to right. Compute an upper bound (as tight as possible)
for the operational intensity for n = 217. Consider only reads (i.e., ignore write-backs).

Solution:

There are conflicts between x and z as they are mapped to the same blocks. y does not
have conflicts. The hit-miss pattern every 16 iterations is MMMM,HHMM,...,HHMM.
Thus, x, y and z generate 17n

16
, n

16
and 16n

16
misses respectively. In total, there are 34n

16

misses. Thus, Q ≥ 64·34n
16

= 136n bytes and I ≤ W/Q = 1/68.

12 of 14



Problem 6: Sampler (19 = 2+2+2+2+4+2+5)

1. Assume that the peak performance π of computers doubles once every 4 years, whereas
the memory bandwidth β doubles once every 8 years. Does this mean that more
computations tend to become compute bound or memory bound in the sense defined
by the roofline plot? Justify your answer.

Solution:

Performance increases faster than memory bandwidth over time. This means that the
ratio π/β tends to become larger, leading to more computations becoming memory
bound.

2. You are given a double type square matrix A ∈ Rn×n with k non-zero entries. What
is the largest k that makes it possible to save storage space by representing it in
compressed sparse row (CSR) format, as opposed to the standard dense representation?
Assume that indices are represented by (4-byte) integers. Show your work.

Solution:

The representation in dense format takes 8n2 bytes. The representation in CSR format
takes 8k + 4(k + n+ 1) bytes. Thus, we need

12k + 4n+ 4 < 8n2

k <
2n2 − n− 1

3

3. What is the advantage of using a write-back/write-allocate cache over a write-through/no-
write-allocate cache?

Solution:

Subsequent writes to the same memory location does not generate memory traffic.
Thus, resulting in less memory traffic for computations that exhibit good locality.

4. In Intel processors, caches use physical addresses, whereas instructions use virtual
addresses. How is it then possible that L1 cache is still efficiently accessed?

Solution:

The lowest-order 12 bits of a memory address are the address within a 4096-byte page,
so the lowest-order 12 bits of a virtual address and its corresponding physical address
are the same. In the L1 cache, these 12 bits are used for the set index and the block
offset. Since these bits do not require address translation, L1 cache look up can start
simultaneously with TLB lookup.

5. Consider a computer with a direct-mapped TLB cache with 8 total entries. The page
size is 1024 bytes. In the following code, assume that the vector x starts at address
0 in memory, and that n = 128. Determine memory locations (addresses) of y[0] and
z[0] that would lead to the worst TLB hit-rate. State also this worst TLB hit-rate and
justify your answer. Assume that expressions are evaluated from left to right.

13 of 14



1 void compute(float* x, float* y, float* z, int n){
2 for(int i=0; i < n; i++){
3 x[i] = x[i] + y[i] + z[i];
4 }
5 }

Solution:

The worst case is when starting addresses of x, y, z are in different pages but mapped
to the same cache entrie. The TLB has 8 entries. Thus, each 8 KiB (213 Bytes) are
mapped to the same set. The worst case is when y starts at address 213 and z at
address 214. The hit rate in this case is about 1/4. To be more exact first iteration has
a hit-miss pattern MMMM, and the following iterations HMMM. Each of vectors fully
fit in a single page. Thus, we have 128*4 accesses and 127 hits. Hit rate = 127/(128*4)
≈ 1/4.

6. Consider an instruction with gap 2 and latency 3. How many such instructions can be
fully executed in 10 cycles? Assume that there are no dependencies between them and
that there is a single execution port and no other instructions are scheduled. Briefly
justify your answer.

Solution: 4

7. Does a fully associative cache always produce less or at most the same number of
cache misses than a direct-mapped cache of the same size and with the same block size
(assuming LRU replacement policy)? If yes, explain why this is the case. Otherwise,
provide a counterexample.

Solution:

No. Considering a cache of 16 bytes and block size B = 8, and an array double

x[4]. The access pattern x[0], x[1], x[3], x[0] generates 4 misses using a fully
associative cache. The same access pattern produces 3 misses on a direct-mapped
cache.

14 of 14


