
263-0007-00: Advanced Systems Lab
Assignment 2: 80 points

Due Date: Th, March 12th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2020/

Questions: fastcode@lists.inf.ethz.ch

Exercises:

1. Short project info (10 pts)
Go to the list of milestones for the projects. If you have not done that yet, please register your project
there. Read through the different points and fill in the first two with the following about your project
(be brief):

Solution: This will be different for each student.

2. Optimization Blockers (25 pts)

In this exercise, we consider the following short computation that is available in Code Expert:

1 void slowperformance1(double *w, double *x, double *y, double *z, int n) {

2 for(int i = 0; i < n; i++) {

3 for (int j = 0; j < n; j++) {

4 if ((i + j) % 2) {

5 z[i] += 1.0 / (x[i*n + j] * sqrt(w[i]));

6 }

7 else {

8 z[i] = compute(w[i], y[i*n + j], z[i]);

9 }

10 z[i] *= x[i*n + j];

11 }

12 }

13 }

Discussion:

(a) Create a table with the runtime numbers of each function that you created. Briefly discuss the
table.

Solution:

Implementation Impl. 1 Impl. 2 Impl. 3 Impl. 4 Impl. 5 Impl. 6
Runtime (cycles) 24.9M 7.88M 5.27M 4.09M 2.71M 1.96M

The table above reports runtime in cycles for six different implementations of the above code, with
optimizations turned on (-O3 -fno-tree-vectorize). The M stands for millions. These numbers
were recorded on a Intel(R) Xeon(R) Silver 4210 @ 2.20GHz Cascade Lake with hyperthreading
disabled, and compiled with GCC 8.3.1.

Implementation 1 is the original code. Implementation 2 unrolls two iterations in both loops to
eliminate the if-condition branch. Implementation 3 inlines function compute, removes invariant
code from the inner loop and applies strength reduction to transform divisions with constants to
multiplications. At this step, all the operations in the inner loop are additions and multiplications.
We can already observe a speedup of 4.7 over the original code. Implementation 4 performs scalar
replacement, and Implementation 5 unrolls four times the outer loop to improve the ILP (with
scalar replacement). Finally, Implementation 6 is the same as 5 but with eight iterations unrolled
instead of four.

(b) What is the speedup of function maxperformance compared to slowperformance1?

Solution: The speedup of Implementation 6 is 12.7.

(c) What is the performance in flops/cycle of your function maxperformance.

Solution: Implementation 6 performs 3n2 + 8n flops. The performance is 1.53 flops/cycle for
n = 1000.

263-2300-00 SS20 / Assignment 2
Instructor: Markus Püschel

Pg 1 of 2 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2020/
https://medellin.inf.ethz.ch/courses/263-2300-ETH/


3. Microbenchmarks(45 pts)

In Code Expert, we provide three functions in file sigmoid.h that implement a floating point square
root instruction (sqrtsd) and two commonly used activation functions in Neural Networks (sigmoid1
and sigmoid2 ). Your task is to write a program (without vector instructions, i.e., standard C) in Code
Expert that benchmarks the maximum and minimum latency and inverse throughput (also called
“gap”) of sqrtsd and sigmoid1. In addition, the latency and gap of sigmoid2 for inputs 1.0 and 0.0.
More specifically:

• Read and understand the code.

• Implement the functions provided in the skeleton in file microbenchmark.cpp:

void initialize_microbenchmark_data (microbenchmark_mode_t mode);

double microbenchmark_get_sqrt_latency ();

double microbenchmark_get_sqrt_gap ();

double microbenchmark_get_sigmoid1_latency ();

double microbenchmark_get_sigmoid1_gap ();

double microbenchmark_get_sigmoid2_latency ();

double microbenchmark_get_sigmoid2_gap ();

• You can use the initialize microbenchmark data function for any kind of initialization that
you may need (e.g. for initializing the input values for the sigmoid functions).

• Function microbenchmark get sqrt latency should return the measured latency of the sqrtsd func-
tion. Analogously, the other functions should return the latency (or gap) of the function implied
by its name. The gap is the inverse of the throughput. The latency and gap have to be measured
in cycles.

• Note that the latency and gap of some instructions (e.g. square root) can vary depending on
their input. Thus, your task is to find the minimum and maximum latency and gap of sqrtsd and
sigmoid1. In addition, the latency and gap of sigmoid2 for inputs 1.0 and 0.0.

• It is not allowed to manually inline the functions in sigmoid.h into the implementation of your
microbenchmarks.

Discussion:

(a) Do the latency and gap of the square root instruction match what is in the Intel Optimization
Manual?
Solution: Yes, the manual reports a latency and gap for sqrtsd (Skylake) of 18 and 6 cycles
respectively. This is consistent with the microbenchmarks.

(b) Based on the dependency, latency and gap information of the operations used to implement
function sigmoid1. Is the measured latency and gap of the sigmoid1 close to what you would
expect?
Solution: Yes, the sigmoid1 function consists of a multiplication, an addition, a square root
instruction and a division. Note that the addition and multiplication will be fused into an FMA
instruction. According to the Intel’s manual, division has a latency and gap of 14 and 4 cycles
respectively and FMA has a latency and gap of 4 and 0.5 cycles. This gives a theoretical latency
of 4+18+14 = 36 cycles which is consistent with the measurements. To determine the theoretical
gap, note that division and square root share the same port and execution unit and they become
the bottleneck. Thus, the gap is 6+4 = 10 cycles which is also close to the measurements.

263-2300-00 SS20 / Assignment 2
Instructor: Markus Püschel

Pg 2 of 2 Computer Science
ETH Zurich

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

