
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

How to Write Fast Numerical Code
Spring 2019
Lecture: Benchmarking

Instructor: Markus Püschel

TA: Tyler Smith, Gagandeep Singh, Alen Stojanov

Overview

 Measuring performance & benchmarking

 References:

 Section 3.2 in: Chellappa, Franchetti, Püschel: How To Write Fast 
Numerical Code: A Small Introduction, GTTSE 2008

 Hoefler and Belli: Scientific Benchmarking of Parallel Computing Systems, 
Supercomputing 2015

 Whaley and Castaldo: Achieving accurate and context-sensitive timing for 
code optimization, Software: Practice and Experience 2008

2

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
https://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking.pdf
http://www.csc.lsu.edu/~whaley/papers/timing_SPE08.pdf


© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Benchmarking

 First: Validate/test your code!

 Measure runtime (in [s] or [cycles]) for a set of relevant input sizes

 seconds: actual runtime

 cycles: abstracts from CPU frequency

 Usually: Compute and show performance (in [flop/s] or [flop/cycle])

 Careful: Better performance ≠ better runtime (why?)

 Op count could differ

 Never show in one plot performance of two algorithms with substantially 
different op count

3

How to Measure Runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Intel)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure 

 ensure proper machine state 
(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

 Getting proper measurements is not easy at all!

4



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Problems with Timing
 Too few iterations: inaccurate non-reproducible timing

 Too many iterations: system events interfere

 Machine is under load: produces side effects

 Multiple timings performed on the same machine

 Bad data alignment of input/output vectors: 

 align to multiples of cache line (on Core: address is divisible by 64)

 sometimes aligning to page boundaries (address divisible by 4096) makes sense

 Machine was not rebooted for a long time: state of operating system causes 
problems

 Computation is input data dependent: choose representative input data

 Computation is inplace and data grows until an exception is triggered 
(computation is done with NaNs)

 You work on a computer that has dynamic frequency scaling (e.g., turbo boost)

 Always check whether timings make sense, are reproducible
5

Benchmarks in Writing

 Specify experimental setup

 platform

 compiler and version

 compiler flags used

 Plot: Very readable

 Title, x-label, y-label should be there

 Fonts large enough

 Enough contrast (e.g., no yellow on white please)

 Proper number format

No: 13.254687; yes: 13.25

No: 2.0345e-05 s; yes: 20.3 μs

No: 100000 B; maybe: 100,000 B; yes: 100 KB

6



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

Spiral SSE

Intel MKL interl.

Spiral C

Spiral C vect

G
fl

o
p

/s
DFT 2

n
(single precision) on Pentium 4, 2.53 GHz

n

What’s Suboptimal?

7

Ugly font

Legends cause long
decoding time

Fully saturated color

Grid lines compete with data lines
(poor layering)

http://funnyimagewebsite.blogspot.ch/

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

DFT 2
n

(single precision) on Pentium 4, 2.53 GHz
[Gflop/s]

n

Spiral SSE

Intel MKL

Spiral scalar

Spiral vectorized

Horizontal
y-label

Left alignment
Attractive font (sans serif, avoid Arial)
Calibri, Helvetica, Gill Sans MT, …

Main line
possibly 

emphasized
(red, thicker)No y-axis

(superfluous)

Background/grid
inverted for 

better layering

No legend; makes decoding easier

8


