
ETH login ID:

(Please print in capital letters)

Full name:

263-2300: How to Write Fast Numerical Code
ETH Computer Science, Spring 2019
Midterm Exam
Monday, April 15, 2019

Instructions

• Write your full name and login ID on the front.

• Make sure that your exam is not missing any sheets.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are
allowed.

Problem 1 (17 = 4+4+4+5)

Problem 2 (16 = 5+2+4+3+2)

Problem 3 (24 = 2+2+6+6+8)

Problem 4 (14 = 6+8)

Problem 5 (15 = 2+9+4)

Problem 6 (14 = 5+2+3+2+2)

Total (100)

1 of 13

Problem 1: Bounds (17 = 4+4+4+5)

Consider an imaginary processor with the following throughputs for different floating point
operations and the five ports on which they are executed:

Instruction Max. throughput (all ports) Port number
[instructions/cycle]

store 1 0
load 2 1 and 2
add/subtract 1 3
mult 2 3 and 4

Consider the three functions f1, f2, and f3 below that produce equivalent outputs:

1 void f1 (const double *x, const double *y, double *res, size_t N){
2 size_t i;
3 for(i=0; i < N; i++){
4 double a = x[i];
5 double b = y[i];
6 res[i] = a*a + b*b + 2*a*b;
7 }
8 }
9
10 void f2 (const double *x, const double *y, double *res, size_t N){
11 size_t i;
12 for(i=0; i < N; i++){
13 double a = x[i];
14 double b = y[i];
15 res[i] = (a+b) * (a+b);
16 }
17 }
18
19 void f3 (const double *x, const double *y, double *res, size_t N){
20 size_t i;
21 for(i=0; i < N; i++){
22 double a = x[i];
23 double b = y[i];
24 res[i] = (a-b) * (a-b) + 4*a*b;
25 }
26 }

Assume the following:

1. The working set of f1, f2, and f3 fits L1 cache and is already loaded into L1.

2. No algebraic compiler transformations are applied: the operations are mapped to
assembly instructions as shown.

3. Ignore integer operations.

Show enough detail with each answer so we understand your reasoning.

2 of 13

1. Determine for each function: a lower bound (as tight as possible) for the runtime
(in cycles) and an associated upper bound for the performance of f1, f2, and f3
based on the instruction mix (i.e, ignore dependencies between operations).

f1: Each iteration has 4 mults and 2 adds. There are 6 flops and the processor can
execute 2 flops per cycle (either an add and a mult or 2 mults).

Runtime lower bound: 3N cycles.
Performance upper bound: 2 flops/cycle.

f2: Each iteration has 2 adds and a mult. The mult can always execute on port 4
while the adds execute on port 3. Then a performance lower bound can be based
entirely on the adds.

Runtime lower bound: 2N cycles.
Performance upper bound: 1.5 flops/cycle.

f3: Each iteration has 3 adds and 3 mults. Assuming no dependencies, the
processor can always execute one add on port 3 and one mult on port 4 every cycle.

Runtime lower bound: 3N cycles.
Performance upper bound: 2 flops/cycle.

2. Now we move the multiplier at port 3 to a new port numbered 5. Does this change
any of the bounds? Explain.

Yes. Now, every cycle 2 mults can be executed using ports 4 and 5 and 1 add can be
executed on port 1, so the processor can now execute 3 flops/cycle (instead of 2). f1
now has a runtime lower bound of 2N cycles and a performance upper bound of 3
flops per cycle. The performance and runtime bounds for f2 and f3 remain the same
because both computations were already bounded by the number of adds.

3 of 13

Problem 2: Operational Intensity (16 = 5+2+4+3+2)

In the following computations, x, y, z are vectors of doubles of length n and A,B,X, Y are
n× n matrices of doubles. No temporary arrays are used in these computations. We
assume a write-back/write-allocate cache and a cold cache (of size γ bytes) at the start of
the computation. sizeof(double) = 8. In the derivations you can omit lower order
terms (writing ≈ instead of =). Show your work.

1. (a) Determine an upper bound for the operational intensity I(n) of the computation
y = Ax+Bz + y considering only compulsory data movement.

Solution:
W (n) ≈ 4n2 flops

Q(n) ≈ sizeof(double) · 2n2 = 16n2 bytes

I(n) ≤ W (n)/Q(n) ≈ 1/4 flops/byte

(b) Assume a processor with a peak performance π = 4 flops/cycle. What is the
least memory bandwidth such that the computation could become compute
bound?

Solution: It is compute bound at:

4n2

π
≥ 16n2

β

β ≥ 16 bytes/cycle

2. (a) Determine an upper bound for the operational intensity I(n) of the computation
Y = AX −XB considering only compulsory data movement.

Solution:
W (n) ≈ 4n3 flops

Q(n) ≈ sizeof(double) · 4n2 = 32n2 bytes

I(n) ≤ W (n)/Q(n) ≈ n/8 flops/byte

Note: Since the question doesn’t specify whether to consider write-backs or not,
the answer Q(n) ≈ 40n2 and I(n) ≤ n/10 is also considered correct.

4 of 13

(b) For which sizes n would you expect I(n) to be roughly accurate?

Solution: We can expect I(n) to be roughly accurate if all four matrices fit in
cache.

sizeof(double) · 4n2 ≤ γ

n ≤
√

γ

32

(c) Would the operational intensity of the computation be different on a
write-through/no-write-allocate cache? If no, explain. If yes, give the bound for
I(n) in this case.

Solution: In a write-through cache, the matrix Y must be written but it is
never read. Thus, for this case the operational intensity remains the same:

Q(n) ≈ sizeof(double) · 4n2 = 32n2 bytes

I(n) ≤ W (n)/Q(n) ≈ n/8 flops/byte

5 of 13

Problem 3: Cache Mechanics (24 = 2+2+6+6+8)

Consider the following code. You are given a 2-way set associative write-back/write-allocate
cache with LRU replacement. Its block size is 16 bytes, and the capacity is 128 bytes.

Consider the following code; n is the common length of the arrays a, b, c.

1 void compute(double *a, double *b, double *c, int n)
2 {
3 // first loop
4 for(int i = 0; i < n; i++) {
5 double x = a[i];
6 double y = b[i];
7 c[i] = x + y;
8 }
9 // Show state of cache at this point
10 // second loop
11 for(int i = n-1; i >= 0; i--) {
12 double x = a[i];
13 double y = b[i];
14 c[i] = x + y;
15 }
16 }

Assume a starts at memory address 0, b directly follows a in memory and c directly
follows b. Memory accesses happen in exactly the order that they appear. Hint: It helps to
draw the cache.

1. What is the capacity of the cache in doubles?

Solution: 16 doubles.

2. How many sets does the cache have?

Solution: 4 sets.

6 of 13

3. For each of the following values of n do the following three things: i) determine the
number of hits and misses for executing the first loop; ii) draw the state of the cache
after the first loop; iii) determine the number of hits and misses in the second loop.
Show your work.

(a) n = 4?

Solution:

(i) The first loop has 6 hits and 6 misses.

(ii) The state of the cache after the first loop is as follows. Italics signify that
the quantity is LRU in that set.
Set 0 1

0 a0,a1 c0,c1
1 a2,a3 c2,c3
2 b0,b1
3 b2,b3

(iii) The second loop has 12 hits and 0 misses.

(b) n = 8?

Solution:

(i) The first loop has 0 hits and 24 misses.

(ii) The state of the cache after the first loop is as follows. Italics signify that
the quantity is LRU in that set.
Set 0 1

0 b0,b1 c0,c1
1 b2,b3 c2,c3
2 b4,b5 c4,c5
3 b6,b7 c6,c7

(iii) The second loop has 0 hits and 24 misses.

(c) n = 12?

Solution:

(i) The first loop has 18 hits and 18 misses.

(ii) The state of the cache after the first loop is as follows. Italics signify that
the quantity is LRU in that set.
Set 0 1

0 c8,c9 a8,a9
1 c10,c11 a10,a11
2 c4,c5 b8,b9
3 c6,c7 b10,b11

(iii) The first 4 iterations of the second loop each have 3 hits and 0 misses.
Subsequent odd-indexed iterations have 0 hits and 3 misses, and subsequent
even-indexed iterations have 3 hits and 0 misses, for a total of 24 hits and
12 misses during the second loop.

7 of 13

Problem 4: Blocking (14 = 6+8)

Given are two arrays A and B of integers, each of length n. sizeof(int) = 4. The
longest common subsequence (LCS) can be computed using the following dynamic program
that fills an n× n table L: (A,B,L are not aliased)

1 // assume sizeof(int) = 4
2 // assume all needed L[0][j] and L[i][0] are initialized to 0
3 void LCS(int **L, int *A, int *B, int n){
4 int i, j, k;
5
6 for (i = 1; i < n; i += 1) {
7 for (j = 1; j < n; j += 1){
8 L[i][j] = max(L[i-1][j], L[i][j-1], L[i-1,j-1]);
9 if (A[i-1] == B[j-1]) L[i][j] = L[i][j]+1;
10 }
11 }
12 }

Assume a fully-associative write-back/write-allocate cache of size γ bytes, a cache block
size of 32 bytes, and only one cache. Further assume that n is much larger than γ. In the
following we perform two cache miss analyses assuming an initially cold cache. In the
derivations you can omit lower order terms (writing ≈ instead of =). Show your
work.

1. Estimate the number of cache misses incurred by LCS as a function of n.

Solution: Each iteration of the j loop, the row L[i][j] and L[i][j − 1] must be read
into cache and B must be read into cache. These loops have good spatial locality so
the number of misses is ≈ 3n2/8.

2. Now we try to reduce the number of misses by blocking the computation into blocks
of size b× b, b a multiple of 8. This means it now has the following loop structure (we
ignore clean-up code if b does not divide n):

1 // assume sizeof(int) = 4
2 // assume all needed L[0][j] and L[i][0] are initialized to 0
3 void LCSblocked(int **L, int *A, int *B, int n){
4 int i, j;
5
6 for (i = 1; i < n; i += b) {
7 for (j = 1; j < n; j += b){
8 for (i1 = i; i1 < i+b-1; i1 += 1){
9 for (j1 = j; j1 < j+b-1; j1 += 1){
10 L[i1][j1] = max(L[i1-1][j1], L[i1][j1-1], L[i1-1,j1-1]);
11 if (A[i1-1] == B[j1-1]) L[i1][j1] = L[i1][j1]+1;
12 }
13 }
14 }

8 of 13

Estimate the number of cache misses incurred by LCSblocked. In doing so, upper
bound the size of b so that you achieve good cache locality. Show also this bound.

Solution: For each b× b block, we access b elements of A, b elements of B, b× b
elements of the current block of L, and 2b− 1 elements of previous blocks of L. We
have good spatial locality on all data accessed in a block except for the accesses to
the column of the previous block of L. Then in a block we have ≈ 3b/8 + b+ b2/8
cache misses. There are ≈ n2/b2 blocks. Multiplying this out, we have

≈ n2/8

cache misses, plus lower order terms.

We can place a bound on b based on the b× b block of L that must fit in cache.

4b2 ≤ γ

b ≤ 1/2
√
γ

9 of 13

Problem 5: Roofline and Sparse MVM (15 = 2+9+4)

We consider sparse matrix-vector multiplication, in double precision floating point, of the
form y = Ax+ y, where x, y are of length n and A is n× n and sparse. The computation is
done with A in CSR (compressed sparse row) format where indices are represented by
(4-byte) integers. You know that A is invertible and has 5n many entries.

The single-core computer you run on has a memory read bandwidth of 8 bytes/cycle
and a peak performance of 2 because it can execute 1 FMA/cycle.

1. Use this information to draw a roofline plot for this processor.

Solution:

2−5 2−4 2−3 2−2 2−1 20 21 22 23 24 25

2−5

2−4

2−3

2−2

2−1

20

21

22

23

24

25

Operational Intensity [Flops / Byte]

Performance [Flops / Cycle]

Roofline
CSR MVM with 4-byte ints
CSR MVM with 2-byte ints

10 of 13

2. From the above information determine a hard upper bound for the performance of
the sparse MVM assuming a cold cache. Show your derivation and visualize the
result in the above roofline plot.

Solution: The amount of work done is W = 10n flops. The matrix is stored as three
arrays:

• A, the nonzero elements, with 5n doubles.

• IA, storing the row indices and row lengths, with n+ 1 integers.

• JA, with the column index of each nonzero element, with 5n integers.

The vectors are stored in arrays containing a total of 7n doubles. There are a total of
7n doubles and ≈ 6n 4-byte integers. The compulsory data movement satisfies

Q(n) ≥ 80n bytes.

The operational intensity satisfies

I ≤ 1/8 flops/byte.

This is bandwidth limited according to the roofline plot. This gives a maximum
performance of 1 flop/cycle.

3. Assume now that all indices in CSR are stored as 2-byte short integers. By how much
can the performance bound be improved? Show your work.

Solution: Now, instead of leading 6n 4-byte integers, we must load 6n 2-byte
integers. The compulsory data movement satisfies

Q(n) ≥ 68n bytes.

The operational intensity satisfies

I ≤ 10/68 = 0.147 flops/byte.

This gives a maximum performance of 80/68 = 20/17 = 1.176 flops / cycle, or a
17.6% improvement.

11 of 13

Problem 6: Sampler (14 = 5+2+3+2+2)

Be brief in your answers, no need to show derivations.

1. Consider the following function

1 void vecsum(float *a, float *b, float *c, float d*, float e*, int n){
2 int i;
3
4 for (i = 0; i < n; i += 1) {
5 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
6 }
7 }

It is run on an Intel-like single-core computer that can perform 2 additions per cycle,
without SIMD vector executions. For different input sizes n (starting with very small
n), warm-cache measurement yields the following performance plot.

adds/cycle

n

1.6

1.0

0.4

How many caches are there?

Solution: We can see three distinct levels of the memory hierarchy — 2 levels of
cache.

Estimate the read bandwidths in bytes/cycle to the caches and memory.

Solution:

L1: 8 bytes/cycle
L2: 5 bytes/cycle
DRAM: 2 bytes/cycle

2. Which types of dependencies can be resolved by renaming? How is renaming done
dynamically by the processor?

Solution: Write after read (WAR) and write after write (WAW). This is
accomplished by register renaming using the reorder buffer.

12 of 13

3. Consider the following function

1 void vecsum(float *a, float *b, int n){
2 int i;
3
4 for (i = 0; i < n; i += 1) {
5 a[i] = a[i] + b[i];
6 }
7 }

compiled in isolation. Can the compiler vectorize (use SIMD vector instructions for)
this function? Explain.

Solution: The compiler can vectorize this code but only if it inserts a runtime check
to make sure that a and b are not aliased to the same data.

4. Earlier Pentium processors had an L1 cache only half the size of Sandybridge or
Haswell. When doubling the size, Intel decided to double the associativity. Why?

Solution: An instruction uses a virtual address, but caches use physical addresses.
The lowest-order 12 bits of a memory address are the address within a 4096-byte
page, so the lowest-order 12 bits of a virtual address and its corresponding physical
address are the same.

On early Pentium processors, the block size and the number of sets were both 64, so
the lowest order 12 bits of an address were used to map an address to its (potential)
location in cache. This way, the TLB lookup and the cache lookup could happen in
parallel, but increasing either the number of sets or the block size would disrupt this
property. Therefore, Intel decided to double the associativity.

5. With a CPU that can perform 2 FMAs per cycle with a latency of 5 cycles, how
many accumulators would you use for a dot-product to (hopefully) achieve the peak
performance?

Solution: In order to reach peak, 10 accumulators should be used to avoid read after
write dependencies.

13 of 13

