
263-2300-00: How To Write Fast Numerical Code
Assignment 3 Solution: 100 points
Due Date: Th, March 28th, 17:00

https://acl.inf.ethz.ch/teaching/fastcode/2019/
Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=10968.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s, Tyler’s or Gagandeep’s office.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Code)
When compiling the final code, ensure that you use optimization flags (e.g. for GCC use the flag “-O3”).

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. Matrix-matrix multiplication kernel (50 pts)

Consider the following matrix-multiplication operation: C := ATB, where C is a 4 × 8 row-major
matrix and B is an n × 8 row-major matrix. The matrix AT can be equivalently described as the
transpose of an n× 4 row-major matrix A, or as a 4× n column-major matrix.

All matrices are double precision.

This operation used as a so-called microkernel in many high-performance linear algebra libraries.

A skeleton and sample C code that implements this operation is provided here.

The operation is illustrated below:

C AT
B

4
8

263-2300-00 SS19 / Assignment 3
Instructor: Markus Püschel

Pg 1 of 5 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2019/
https://moodle-app2.let.ethz.ch/course/view.php?id=10968
https://acl.inf.ethz.ch/teaching/fastcode/2019/homeworks/hw03files/microkernel.zip

Implement the specified matrix-matrix multiplication operation with vector intrinsics using the AVX2
(with FMA) instruction set. Optimize it as much as you can. You may may use shuffle intrinsics such
as m256 shuffle pd and m256 permute2f128 pd. For this assignment you are not allowed to
use broadcast intrinsics like m256 broadcast pd.

Hints:

(a) The size of C is fixed to 4× 8, but n, the width of AT and B, can be any size.

(b) Each iteration of the loop exposes a column of AT and a row of B, and performs an outer-product,
where each element of the column of AT is multiplied with each element of the row of B, updating
the corresponding element of C. If ai is the element in the ith row of the current column of AT ,
and bj is the element in the jth column of the current row of B, then the product ai · bj is added
to the element in the ith row and jth column of C.

(c) You may find that it is easiest to vectorize this outer-product rather than the loop around it.
This way n does not need to be divisible by 4.

Answer the following:

(a) Report the number of flops per cycle attained by your code in a plot for n = 25, . . . , 500 in steps
of 25.

(b) What percentage of peak Gflop/cycle does your code attain? Consider for the peak only the adds
and mults being performed.

(c) Submit your optimized microkernel.cpp file to moodle.

263-2300-00 SS19 / Assignment 3
Instructor: Markus Püschel

Pg 2 of 5 Computer Science
ETH Zurich

Solution:

Code for a sample solution is given below.

1 void microkernel_shuffles(double* At, double *B, double *C, int n) {

2
3 }

Below is a plot of the performance achieved, compiled with gcc 7.3.0 with the flags -O3 -mfma -mavx2.

Discussion:

This code attains a maximum of 13.917 flops/cycle, which is 87% of peak, on Tyler’s Skylake computer.
In order to reach performance, C is stored in m256d variables with the intent that it remains in
registers. Each iteration of the loop, 8 elements of B are loaded and 4 elements of A are loaded. Three
permutations are then used to shuffle elements of A around to compute the outer product. For the
permutations, it is (1) essential to use as few as possible and (2) essential to cross SIMD lanes as
seldom as possible. In AVX, the 256-bit ymm registers are organized by lanes. The lower 128 bits are
in one lane and the higher 128 bits are in another. Crossing lanes is expensive. You may have noticed
that there are fewer instructions to permute or blend across lanes, and the instructions that do so have
a higher latency. Here, mm256 permute2f128 pd compiles to the instruction vperm2f128, which has a
latency of 3 cycles on Skylake, whereas mm256 permute pd compiles to vpermilpd, which has a latency
of 1 cycle. In the code above, each iteration of the loop has only one instruction that crosses SIMD
lanes. After the main loop, we have C stored in a somewhat convoluted manner in 8 m256d variables
and we use 16 permutation instructions to permute it into a row-stored format to write it out using
packed store instructions.

The variables storing the matrix C are designed to remain in registers. On Haswell, if there are not
multiple accumulators for these registers, the FMA latency of 5 cycles causes a bottleneck, and this
kernel can only achieve 80% of peak. In previous homeworks, we have seen one solution to this issue is
to use multple accumulators. Another solution, applicable in this case, is to implement a larger kernel.
A 4× 12 kernel would be able to achieve close to peak.

263-2300-00 SS19 / Assignment 3
Instructor: Markus Püschel

Pg 3 of 5 Computer Science
ETH Zurich

2. Complex representation conversion (45 pts)

You are given an array of n nonzero complex numbers, stored in the following interleaved format:

[a0, b0, a1, b1, a2, b2, ..., an−1, bn−1],

where each pair (aj , bj) represents the complex number aj + bji, i =
√
−1. Your task is to compute

an array containing a different (polar-like) representation of these complex numbers, stored in the
following interleaved format:

[p0, q0, p1, q1, p2, q2, ..., pn−1, qn−1],

where pj = a
b , and qj = sgn(a) ·

(
a2j + b2j

)
. We define the sign function sgn(x) as follows:

sgn(x) =

−1 x < 0

0 x = 0

1 x > 0

A skeleton and sample C code that implements this operation is provided here.

(a) Implement the specified operation with vector intrinsics using the AVX2 (with FMA) instruction
set to run as fast as possible.

(b) Report the number of flops per cycle attained by your code.

(c) Considering only the port and throughput information for the SIMD instructions in your conver-
sion routine, give a hard lower bound of its runtime on Haswell.

(d) Submit your complex conversion.cpp file to moodle.

Solution:

A sample solution of this code in vector intrinsics is as follows:

1 void complex_conversion_avx(const double *complex_a , double *complex_b , int n) {

2
3 }

Each iteration has a single division instruction which has a throughput on Haswell of at most 1
instruction per 16 cycles. All other instructions can execute using a different port, and so an upper
bound on the performance is 20 flops per 16 cycles. The (below) reported performance is better than
that—Skylake has a throughput of 1 vdivpd instruction per 8 cycles, giving a performance upper bound
of 2.5 flops per cycle, if we bound only by the number of divisions. The below plot reports the flops
per cycle for various problem sizes.

263-2300-00 SS19 / Assignment 3
Instructor: Markus Püschel

Pg 4 of 5 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2019/homeworks/hw03files/complex_conversion.zip

263-2300-00 SS19 / Assignment 3
Instructor: Markus Püschel

Pg 5 of 5 Computer Science
ETH Zurich

