
263-2300-00: How To Write Fast Numerical Code
Assignment 1: 100 points

Due Date: Th, March 9th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html

Questions: fastcode@lists.inf.ethz.ch

Exercises:

1. (20 pts) Get to know your machine
The following microarchitectural parameters are of Tyler’s desktop machine:

(a) Processor manufacturer, name, and number.

Solution: Intel(R) Xeon(R) CPU E3-1275 v5

(b) Number of CPU logical and physical cores.

Solution: 4 physical, 8 logical.

(c) CPU-core frequency.

Solution: 3.6 GHz is the nominal CPU frequency. At the time of writing, it was throttled down
to 2.6 GHz

(d) CPU maximum frequency. Does your CPU support Turbo Boost Technology (or, if not an Intel
CPU, something similar)?

Solution: It does support Turbo Boost, and the maximum frequency is 4.0GHz.

For one core and without using SIMD vector instructions determine:

(d) Latency [cycles] and throughput [ops/cycle] for floating point additions.
Solution: Latency: 4 cycles. Throughput: 2 per cycle.

(e) Latency [cycles] and throughput [ops/cycle] for floating point multiplications.
Solution: Latency: 4 cycles. Throughput: 2 per cycle.
Note: Intel intrinsics guide lists the latency of double-precision multiply (MULSD) as 3 cycles but
both our own and Agner Fog’s measurements indicate that it is 4 cycles.

(f) Latency [cycles] and throughput [ops/cycle] for floating point divisions.
Solution:
For single precision (DIVSS) Latency: 11 cycles. Throughput: 0.33 per cycle.
For double precision (DIVSD) Latency: 14 cycles. Throughput: 0.25 per cycle.

(g) Latency [cycles] and throughput [ops/cycle] for fused multiply-add (FMA) operations (if sup-
ported).
Solution: Latency: 4 cycles. Throughput: 2 per cycle.

(h) Latency [cycles] and throughput [ops/cycle] for converting a double-precision floating-point ele-
ment to a signed 32-bit integer.
Solution: Assuming the following instruction is used:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=cvtsd2si&expand=1769, La-
tency: 6 cycles. Throughput: 1 per cycle.

(i) Maximum theoretical floating point peak performance in both flop/cycle and Gflop/s.

Solution: Without SIMD instructions, it can issue two FMA instructions each cycle, giving a
maximum of 4 flops/cycle and 16 Gflop/s with turboboost.

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 1 of 6 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html
https://www.agner.org
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=cvtsd2si&expand=1769

2. (10 pts) Cost analysis Consider the following algorithm that solves the linear system Lx = b for x
given L and b, where L is an n× n lower-triangular matrix:

1 void lower_triangular_solve (double L[], double x[], double b[], int N) {

2 for(int i = 0; i < N; i++) {

3 double el10_dot_x0 = 0.0;

4 for(int j = 0; j < i; j++) {

5 el10_dot_x0 += L[i + j*N] * x[j];

6 }

7 x[i] = (b[i] - el10_dot_x0) / L[i + i*N];

8 }

9 }

(a) Define a suitable detailed floating point cost measure C(n).

(b) Compute the cost C(n) of the function lower triangular solve.

Solution:

(a) The function lower triangular solve performs floating point multiplications, divisions, and
additions. Therefore,

C(n) = Cadd ·Nadd + Cmult ·Nmult + Cdiv ·Ndiv.

(b) There are N iterations of the outer loop. For each outer loop iteration there are i iterations of
the inner loop. From this we can determine that there are a total of (N − 1)N/2 iterations of
the inner loop. Each iteration of the inner loop has 1 floating point addition and 1 floating point
multiplication. After the inner loop, the function performs 1 floating point addition and 1 floating
point addition. Thus,

Nadd = N(N − 1)/2 + N,

Nmul = N(N − 1)/2,

Ndiv = N,

C(n) = Cadd · (N(N − 1)/2 + N) + Cmul · (N(N − 1)/2) + Cdiv ·N.

3. (25 pts) Matrix multiplication

In this exercise, we provide a C source file for multplying an n×n matrix with a vector and a C header
file to time the matrix-vector multiplication using different methods under Windows and Linux (for
x86 compatible systems).

(a) Inspect and understand the code.

(b) Determine the exact number of (floating point) additions and multiplications performed by the
compute() function in mvm.c.

(c) Using your computer, compile and run the code. Compile with the highest level of optimization
provided by your compiler (with GCC, compile with the flag ”-O3”). A modern compiler will
automatically vectorize this very simple routine. Ensure you get consistent timings between timers
and for at least two consecutive executions.

(d) Then, for all square matrices of sizes n between 200 and 4000, in increments of 200, create a plot
for the following quantities (one plot per quantity, so 3 plots total). n is on the x-axis and on the
y-axis is, respectively,

i. Runtime (in cycles).

ii. Performance (in flops/cycle).

iii. Using the data from exercise 1, percentage of the peak performance reached.

(e) Briefly discuss your plots.

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 2 of 6 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2019/homeworks/hw01files/mvm.c
https://acl.inf.ethz.ch/teaching/fastcode/2019/homeworks/hw01files/tsc_x86.h

Solution:

Intel(R) Xeon(R) CPU E3−1275 v5 @ 3.60GHz
L1: 32KB, L2: 256KB, L3: 8MB

Compiler: icc version 18.0.3, OS: Ubuntu 18.04.2

●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0e+00

1e+07

2e+07

500 1000 1500 2000 2500 3000 3500 4000

Input size

Runtime [C]

L2 L3

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

1

2

3

4

5

500 1000 1500 2000 2500 3000 3500 4000

Input size

Performance [F/C]

L2 L3

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

10

20

30

500 1000 1500 2000 2500 3000 3500 4000

Input size

Percentage of Peak

Figure 1: Plots resulting from execution of mvm.c on a Skylake CPU (vector peak performance: 16 f/c).
The code was compiled with icc 18.0.3 with O3 enabled.

(b) The code performs 2n2 floating point operations.

(d) See Fig. 1 for part (i) and (ii). The Plot for (iii) is same as for (ii) but with data on y-axis scaled.

(e) The computation performs well for small problem sizes but performance suffers greatly as soon as
the matrices no longer fit in the L3 cache. For large problem sizes, matrix-vector multiplication
is an inherently memory-bound operation.

4. (20 pts) Performance Analysis

Assume that the elements of vectors x, y, u and z of length n are combined as follows:

zi = zi + ui · ui + xi · yi · zi

(a) Write a C/C++ compute() function that performs the computation described above on arrays of
doubles. Save the file as combine.c(pp).

(b) Within the same file create a benchmarking infrastructure based on the timing function that
produces the most consistent results in Exercise 3.

(c) Then, for all two-power sizes n = 24, . . . , 223 create performance plot with n on the x-axis (choose
logarithmic scale) and performance (in flops/cycle) on the y-axis. Create two series such that
the first has all optimization flags disabled, and the second series has the major optimizations
flags enabled (including vectorization). Randomly initialize all arrays. For all n repeat your
measurements 30 times reporting the median in your plot.

(d) If you have an Intel processor, run the same tests again, but make sure that Intel Turbo Boost is
disabled (or enabled if the previous plot was generated with Turbo Boost disabled).

(e) Briefly explain eventual performance variations in your plot and the effects of Turbo Boost.

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 3 of 6 Computer Science
ETH Zurich

L1 L2 L3

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

2

4

6

8

2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21 2^22 2^23

Input size

●

●

v1 (TB disabled) −O0

v2 (TB disabled) −xHost −O3

v3 (TB enabled) −O0

v4 (TB enabled) −xHost −O3

Intel(R) Xeon(R) CPU E3−1275 v5 @ 3.60GHz
L1: 32KB, L2: 256KB, L3: 8MB
Compiler: icc version 18.0.3, OS: Ubuntu 18.04.2

Performance [F/C]

Figure 2: Plots resulting from execution of combine.c on an Intel Skylake CPU (peak performance: 16 f/c).
The table reflects the performance values obtained running v2 series.

Solution:

Code can be found here: https://acl.inf.ethz.ch/teaching/fastcode/2019/homeworks/hw01files/combine.zip.

Compiling the algorithm with all optimisations disabled, will result in machine code that is neither
optimized or vectorized, and the performance is flat across problem sizes. However with optimizations
turned on, we see that performance varies across problem sizes. Performance is great when the data
fits in cache, and becomes worse as the size of the data grows. We can even see “steps”: performance
is greatest when the data fits in L1, and becomes incrementally worse as it no longer fits in subsequent
levels of cache. Finally when it no longer fits in the L3 cache, the computation is almost as slow as
when optimizations were turned off.

We use the CPU’s time step counter (RDTSC) to measure performance. The time step counter increments
at a constant rate equal to the nominal clock frequency of the CPU, so it is a measure of time rather
than cpu cycles. Turbo Boost increases the CPU’s frequency above this nomial clock frequency. The
number of CPU cycles that are needed to complete the algorithm do not decrease when Turbo Boost is
enabled. However, since RDTSC ticks at a constant rate, while the core frequency is boosted, it gives the
perception that the algorithm is completed in less cycles, thus increasing the resulting performance.
Therefore v3 and v4 do not reflect the accurate performance result.

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 4 of 6 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2019/homeworks/hw01files/combine.zip

5. (20 pts) Bounds

Consider the three artificial computations below. The functions operate on input arrays of length N
and store the results in an output array of length N :

1 void artcomp1(float alpha , float x[], float y[], float z[], int N) {

2 for (int i = 0; i < N; i++)

3 y[i] = alpha * (x[i] + y[i] + z[i] + 1.0);

4 }

5 void artcomp2(float alpha , float x[], float y[], int N) {

6 for (int i = 0; i < N; i++) {

7 y[i] = alpha / x[i];

8 }

9 }

10 void artcomp3(float x[], float y[], float z[], int N) {

11 // Assume 3 divides N

12 for (int i = 0; i < N; i += 3) {

13 y[i] = x[i] * z[i];

14 y[i + 1] += x[i + 1] * z[i + 1];

15 y[i + 2] = x[i + 2] + z[i + 2];

16 }

17 }

We consider a Core i7 CPU based on a Haswell processor. As seen in the lecture, it offers FMA
instructions (as part of AVX2) that compute y = a * x + b on floating point numbers. Consider
the information from the lecture slides on the throughput of the according operations. Assume that
divisions are performed with the regular div on Port 0. Assume the bandwidths that are given in the
additional material from the lecture: Abstracted Microarchitecture

(a) Determine the exact cost (in flops) of each function.

(b) Determine an upper bound on the operational intensity of each function. Assume empty caches
and consider only reads but note: arrays that are only written are also read and the read should
be included.

(c) Consider only one core and determine, for each function, a hard lower bound (not asymptotic) on
the runtime (measured in cycles), based on:

i. The op count. Assume that the code is compiled using gcc with the following flags:
-fno-tree-vectorize -mfma -march=core-avx2 -O3 and that FMAs are used as much as
possible. Be aware that the lower bound is also affected by the available ports offered for the
computation (see lecture slides).

ii. Loads, for each of the following cases: All floating point data is L1-resident, L2-resident, and
RAM-resident. Consider best case scenario (peak bandwidth).

Solution:

(a) The flop cost for each function are

i. C(N) = 4N

ii. C(N) = N

iii. C(N) = 4N/3

Note that 1.0 is a double, and artcomp1 therefore has two conversions. If these are included,
C(N) = 6N for that operation.

(b) The operational intensity is

i. I(N) = 4Nflops
3Nfloat = 1flops

3bytes

ii. I(N) = Nflops
2Nfloats = 1flops

8bytes

iii. I(N) = 4N/3flops
3Nfloats = 1flop

9bytes

(c) For all cases I(N) ∈ O(1)

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 5 of 6 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2019/slides/03-architecture-core.pdf

i. These computations are all throughput rather than latency bound. We can obtain bounds
by examining which execution ports the instructions are scheduled to and the throughputs of
those instructions.

A. There are a few different answers to this question that we consider valid.

• If one interpreted ”FMAs are used as much as possible” to mean that FMAs are used
whenever an addition and a multiplication can be fused, then each iteration can be
executed using one FMA and two addition instructions. The FMA can be co-issued
with one of the additions, but the addition instructions must be scheduled on the same
port. This resulting in a lower bound of 2N cycles.

• If ”FMAs are used as much as possible” is instead interpreted to mean additions (c :=
a + b) are performed using FMA instructions (of the form c := 1.0 · a + b), but the
additions (implemented as FMA instructions) do not need to be scheduled on the same
port. This resulting in a lower bound of 1.5N cycles.

• Without fast math turned on, the compiler is not allowed to apply transformations
such as

alpha * (x[i] + y[i] + z[i] + 1.0)→ alpha * (x[i] + y[i] + z[i]) + alpha

Then there are 3 additions and 1 multiplication that cannot be fused. If the additions
are implemented as addition instructions, they must all be executed on the same port,
giving a lower bound of 3N cycles. If they are instead FMA instructions, we get a
lower bound of 2N cycles as there are 4 instructions that can all be executed on either
of two ports.

• The literal 1.0 should have instead been 1.0f. In the present code, The present code
must convert the result of x[i] + y[i] + z[i] must be converted to double-precision, and
the result must be converted to single-precision before storing it in y[i]. then there
must be two conversion instructions: CVTSS2SD, which can be executed on ports 0 or
5, and CVTSD2SS, which can be executed on ports 1 or 5.

B. Single-precision division has a throughput of 1 per 7 cycles on haswell. Therefore the
lower bound is 7N cycles.

C. We must consider two iterations of the loop at a time.
Each iteration, we have a multiplication, FMA, and addition. The multiplication of the
first iteration and the FMA of the first iteration can be co-issued, and the addition of the
first iteration can be co-issued with the multiplication of the second iteration. Then the
FMA of the second iteration and the addition of the second iteration can be co-issued,
and this process can repeat for subsequent iterations. Two iterations must take 3 cycles,
and there are N/3 iterations. The lower bound is N/2 cycles.

ii. A. Cdouble loads(N) = 3/2N

B. Cdouble loads(N) = N

C. Cdouble loads(N) = 3/2N

iii. http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring17/slides/arch.pdf shows peak
bandwidth of L1, L2 and an estimate for the RAM throughput. It follows that:

A. rL1 = 3N
16 , rL2 = 3N

16 , rRAM = 3N
4

B. rL1 = N
8 , rL2 = N

8 , rRAM = N
2

C. rL1 = 3N
16 , rL2 = 3N

16 , rRAM = 3N
4

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 6 of 6 Computer Science
ETH Zurich

http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring17/slides/arch.pdf

