
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

How to Write Fast Numerical Code
Spring 2017
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel

TA: Alen Stojanov, Georg Ofenbeck, Gagandeep Singh

ATLAS

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

Model-Based ATLAS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

source: Pingali, Yotov, Cornell U.2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Principles

 Optimization for memory hierarchy

 Blocking for cache

 Blocking for registers

 Basic block optimizations

 Loop order for ILP

 Unrolling + scalar replacement

 Scheduling & software pipelining

 Optimizations for virtual memory

 Buffering (copying spread-out data into contiguous memory)

 Autotuning

 Search over parameters (ATLAS)

 Model to estimate parameters (Model-based ATLAS)

 All high performance MMM libraries do some of these (but possibly in a
different way)

3

Today

 Memory bound computations

 Sparse linear algebra, OSKI

4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Memory Bound Computation

 Data movement, not computation, is the bottleneck

 Typically: Computations with operational intensity I(n) = O(1)

performance

operational intensity

peak performance bound

memory bandwidth bound

memory
bound

compute
bound

5

Memory Bound Or Not? Depends On …

 The computer

 Memory bandwidth

 Peak performance

 How it is implemented

 Good/bad locality

 SIMD or not

 How the measurement is done

 Cold or warm cache

 In which cache data resides

 See next slide

6

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Example: BLAS 1, Warm Data & Code

0

10

20

30

40

50

60

70

80

90

100

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

z = x + y on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

L1
cache

L2
cache

L3
cache

2 doubles/cycle

1 double/cycle

1/2 double/cycle

sum of vector lengths (working set)

Percentage peak performance (peak = 1 add/cycle)

Guess the
read bandwidths

7

Sparse Linear Algebra

 Sparse matrix-vector multiplication (MVM)

 Sparsity/Bebop/OSKI

 References:

 Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization
Framework for Sparse Matrix Kernels, Int’l Journal of High Performance
Comp. App., 18(1), pp. 135-158, 2004

 Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.;
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply,
pp. 26, Supercomputing, 2002

 Sparsity/Bebop website

8

http://bebop.cs.berkeley.edu/

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Sparse Linear Algebra

 Very different characteristics from dense linear algebra (LAPACK etc.)

 Applications:

 finite element methods

 PDE solving

 physical/chemical simulation
(e.g., fluid dynamics)

 linear programming

 scheduling

 signal processing (e.g., filters)

 …

 Core building block: Sparse MVM

Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/claus/
projects/unfitted-meshes_en.html

9

Sparse MVM (SMVM)

 y = y + Ax, A sparse but known

 Typically executed many times for fixed A

 What is reused (temporal locality)?

 Upper bound on operational intensity?

●= +

y y xA

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Storage of Sparse Matrices

 Standard storage is obviously inefficient: Many zeros are stored

 Unnecessary operations

 Unnecessary data movement

 Bad operational intensity

 Several sparse storage formats are available

 Most popular: Compressed sparse row (CSR) format

 blackboard

11

CSR

 Assumptions:

 A is m x n

 K nonzero entries

 Storage:

 K doubles + (K+m+1) ints = Θ(max(K, m))

 Typically: Θ(K)

b c c

a

b b

c

A as matrix

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

length K

length K

length m+1

12

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Sparse MVM Using CSR

void smvm(int m, const double* values, const int* col_idx,
const int* row_start, double* x, double* y)

{
int i, j;
double d;

/* loop over m rows */
for (i = 0; i < m; i++) {
d = y[i]; /* scalar replacement since reused */

/* loop over non-zero elements in row i */
for (j = row_start[i]; j < row_start[i+1]; j++)
d += values[j] * x[col_idx[j]];

y[i] = d;
}

}

y = y + Ax

CSR + sparse MVM: Advantages?
13

CSR

 Advantages:

 Only nonzero values are stored

 All three arrays for A (values, col_idx, row_start) accessed
consecutively in MVM (good spatial locality)

 Good temporal locality with respect to y

 Disadvantages:

 Insertion into A is costly

 Poor temporal locality with respect to x

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Impact of Matrix Sparsity on Performance

 Adressing overhead (dense MVM vs. dense MVM in CSR):

 ~ 2x slower (example only)

 Fundamental difference between MVM and sparse MVM (SMVM):

 Sparse MVM is input dependent (sparsity pattern of A)

 Changing the order of computation (blocking) requires changing the data
structure (CSR)

15

Bebop/Sparsity: SMVM Optimizations

 Idea: Blocking for registers

 Reason: Reuse x to reduce memory traffic

 Execution: Block SMVM y = y + Ax into micro MVMs

 Block size r x c becomes a parameter

 Consequence: Change A from CSR to r x c block-CSR (BCSR)

 BCSR: Blackboard

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

BCSR (Blocks of Size r x c)

 Assumptions:

 A is m x n

 Block size r x c

 Kr,c nonzero blocks

 Storage:

 rcKr,c doubles + (Kr,c+m/r+1) ints = Θ(rcKr,c)

 rcKr,c ≥ K

b c c

a

b b

c

A as matrix (r = c = 2)

b c 0 a 0 c 0 0 b b c 0

0 1 1

0 2 3

b_values

b_col_idx

b_row_start

A in BCSR (r = c = 2):

length rcKr,c

length Kr,c

length m/r+1

17

Sparse MVM Using 2 x 2 BCSR
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,

const double *b_values, double *x, double *y)
{

int i, j;
double d0, d1, c0, c1;

/* loop over bm block rows */
for (i = 0; i < bm; i++) {

d0 = y[2*i]; /* scalar replacement since reused */
d1 = y[2*i+1];

/* dense micro MVM */
for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) {

c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */
c1 = x[2*b_col_idx[j]+1];
d0 += b_values[0] * c0;
d1 += b_values[2] * c0;
d0 += b_values[1] * c1;
d1 += b_values[3] * c1;

}
y[2*i] = d0;
y[2*i+1] = d1;

}
}

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

BCSR

 Advantages:

 Temporal locality with respect to x and y

 Reduced storage for indexes

 Disadvantages:

 Storage for values of A increased (zeros added)

 Computational overhead (also due to zeros)

 Main factors (since memory bound):

 Plus: increased temporal locality on x + reduced index storage
= reduced memory traffic

 Minus: more zeros = increased memory traffic

* =

19

Which Block Size (r x c) is Optimal?

source: R. Vuduc, LLNL

Example:

 20,000 x 20,000 matrix
(only part shown)

 Perfect 8 x 8 block structure

 No overhead when blocked
r x c, with r, c divides 8

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Speed-up Through r x c Blocking

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

• machine dependent
• hard to predict

21

How to Find the Best Blocking for given A?

 Best block size is hard to predict (see previous slide)

 Solution 1: Searching over all r x c within a range, e.g., 1 ≤ r,c ≤ 12

 Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs

 Total cost: 1440 SMVMs

 Too expensive

 Solution 2: Model

 Estimate the gain through blocking

 Estimate the loss through blocking

 Pick best ratio

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Model: Example

Gain by blocking (dense MVM) Overhead (average) by blocking

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

* =

Model: Doing that for all r and c
and picking best

23

Model

 Goal: find best r x c for y = y + Ax

 Gain through r x c blocking (estimation):

dependent on machine, independent of sparse matrix

 Overhead through r x c blocking (estimation)
scan part of matrix A

independent of machine, dependent on sparse matrix

 Expected gain: Gr,c/Or,c

dense MVM performance in r x c BCSR
dense MVM performance in CSR

Gr,c =

number of matrix values in r x c BCSR
number of matrix values in CSR

Or,c =

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Gain from Blocking (Dense Matrix in BCSR)

• machine dependent
• hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

ro
w

 b
lo

ck
 s

iz
e

 r

ro
w

 b
lo

ck
 s

iz
e

 r

column block size c column block size c

Pentium III Itanium 2

25

Typical Result

BCSR model

BCSR exhaustive
search

Analytical
upper bound
how obtained?
(blackboard)

CSR

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Principles in Bebop/Sparsity Optimization

 Optimization for memory hierarchy = increasing locality
 Blocking for registers (micro-MVMs)

 Requires change of data structure for A

 Optimizations are input dependent (on sparse structure of A)

 Fast basic blocks for small sizes (micro-MVM):
 Unrolling + scalar replacement

 Search for the fastest over a relevant set of algorithm/implementation
alternatives (parameters r, c)
 Use of performance model (versus measuring runtime) to evaluate expected

gain

Different from ATLAS

27

SMVM: Other Ideas

 Cache blocking

 Value compression

 Index compression

 Pattern-based compression

 Special scenario: Multiple inputs

28

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Cache Blocking

 Idea: divide sparse matrix into blocks of sparse matrices

 Experiments:

 Requires very large matrices (x and y do not fit into cache)

 Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

29

Value Compression

 Situation: Matrix A contains many duplicate values

 Idea: Store only unique ones plus index information

b c c

a

b b

c

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

1 2 2 0 1 1 2

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR-VI:

a b c

Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaded
Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008

30

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Index Compression

 Situation: Matrix A contains sequences of nonzero entries

 Idea: Use special byte code to jointly compress col_idx and row_start

row_start

col_idx

byte code

Coding Decoding

Willcock and Lumsdaine, Accelerating Sparse Matrix Computations
via Data Compression, pp. 307-316, ICS 2006

31

Pattern-Based Compression

 Situation: After blocking A, many blocks have the same nonzero
pattern

 Idea: Use special BCSR format to avoid storing zeros;
needs specialized micro-MVM kernel for each pattern

b c c

a

b b

c

A as matrix

b c 0 a 0 c 0 0 b b c 0

Values in 2 x 2 BCSR

b c a c b b c

Values in 2 x 2 PBR

+ bit string: 1101 0100 1110

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation
for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009

32

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Special scenario: Multiple inputs

 Situation: Compute SMVM y = y + Ax for several independent x

 Blackboard

 Experiments:
up to 9x speedup for 9 vectors

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

33

