263-2300-00: How To Write Fast Numerical Code
Assignment 4: 120 points
Due Date: Th, April 13th, 17:00
http://www.inf.ethz.ch/personal /markusp/teaching/263-2300-ETH-spring17/course.html
Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):
e (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=3122.
Before submission, you must enroll in the Moodle course.

e (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

e (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s, Gagandeep’s or Georg’s office. Late homeworks have to be submitted electronically by email to the
fastcode mailing list.

e (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

e (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. Cache mechanics for scalar code (40 pts)
Consider a direct mapped cache of size 16KB with a block size of 16 bytes. The cache is write-back and
write-allocate. Remember that sizeof (float) == 4 and sizeof(size_t) = 8. Assume that the cache starts
empty and that access to local variables i.e., i, j and n do not cause cache misses.

(a) The code below computes the sum of each row in matrix mat into vector v. Assume that mat and v are
stored consecutively in memory and that mat starts at address 0.

void sum_row(float * v, float ** mat, const size_t n) {
for (size_t i = 0; i < n; i++)
for (size_t j = 0; j < nj; j++)
v[i] = v[i]l + mat[il[j];

Tk W N

i. What is the cache miss rate if n = 647
ii. What is the cache miss rate if n = 1287

(b) Next consider the code below which computes the sum of each column in matrix mat into vector v with
the same assumptions as for (a).

void sum_column(float * v, float ** mat, const size_t n) {
for (size_t i = 0; i < n; i++)
for (size_t j = 0; j < nj; j++)
v[il = v[il + mat[jl[i];

Tk W N =

i. What is the cache miss rate if n = 647
ii. What is the cache miss rate if n = 1287

Show in each case some detail so we see how you got the result.

263-2300-00 SS17 / Assignment 4 Pg 1 of 6 Computer Science
Instructor: Markus Piischel ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=3122

Solution:

(a) mat and v are accessed row-wise n? and 2n? times respectively. For every iteration, we assume that v is
accessed before mat.

i. For n = 64, sizeof(mat) == cache_size. First 64 elements of mat and v map to the same cache lines.
There are conflict misses when code accesses blocks of v and mat that map to the same cache line.
This happens for (: = 0,0 < 7 < 3) resulting in 4 conflict misses for v and 3 for mat. The remaining

o — (TH1024+16)x100 ¢ 5o

3%64%64 -9 70
ii. For n =128, sizeof(mat) == 4 x cache_size. There will be conflict misses between v and mat when
(1=0,0<5<3), (1=32,32<35<35), (1 =64,64 <7 <67) and (¢ = 96,96 < j < 99) resulting
in 28 misses. The remaining misses are compulsory misses for mat and v. Thus cache miss rate

(2844096432) X100
3%128%128 ~ 8.5%.

misses are compulsory misses for mat and v. Thus, cache miss rat

(b) The code accesses mat column-wise now.

i. mat fits in the cache. There will be conflict misses between v and mat whenever j = 0. Each conflicting
cache line has 3 misses for mat and 4 for v. There are 16 conflicting cache lines and thus, the total
number of conflict misses are 112. The remaining misses are compulsory misses for mat and v. Thus

. — (1124+1024+16)x100
cache miss rate = T — ~ 9.4%.

ii. mat does not fit in cache. As a result, every access to mat results in cache miss. There is 1 conflict

miss for v whenever j € {0,32,64,96}. The remaining misses are compulsory misses for v. Thus

(512+128%128+32) X 100 ~ 344%

cache miss rate = 3+ 128128

2. (25 pts) Cache Mechanics for vector code
The AVX vectorized code below computes the outer product of vectors u and v into matrix w. Assume the
same cache and setup as for previous problem. Assume that w, u and v are allocated consecutively (in the order
w, u, v) and that w starts at address 0.

1 void outer_product(float * w, float *u, float * v, const size_t n) {
2 for (size_t i = 0; i < n; i++){

3 __m256 opl = _mm256_setl_ps(ulil);

4 for (size_t j = 0; j < n; j += 8){

5 __m256 op2 = _mm256_loadu_ps(v + j);

6 __m256 res = _mm256_mul_ps (opl, op2);

7 _mm256_storeu_ps(w + n * i + j, res);

8 }

9 }

10 %

(a) What is the cache miss rate if n = 647

(b) What is the cache miss rate if n = 1287

(c) Does it make a difference in both cases if w, u and v are allocated consecutively but in another order? If
yes, then report with an example.

Show in each case some detail so we see how you got the result.

Solution:

The code accesses u, v and w n, n? and n? times repectively. The AVX load instruction fetches 8 floats into the
cache in 2 cache lines. We assume that both cache lines are loaded together so that one AVX access results in
one compulsory miss.

(a) w fits in cache whereas u and v conflict with w on 16 cache lines each. There is 1 conflict miss for u due
to conflict with w for the second iteration of the i-loop. There are 8 conflict misses for v due to conflict
with w for 4 = 2. The remaining misses are compulsory misses for u, v and w. Thus cache miss rate
— (9451248+16)x100 & w07
= 2%64%64+64 ~ D-D70.

(b) w does not fit in cache whereas u and v conflict with w on 32 cache lines each. There are 4 conflict misses
for u due to conflict with w for ¢ € {1, 33,65,97}. There are 64 conflict misses for v due to conflict with w
for i € {2,34,66,98}. The remaining misses are compulsory misses for u, v and w. Thus cache miss rate
_ (68+42048+16+32)x100 g coz
- 2+128+1284128 ~ 9.070.

(¢) Yes, for N = 64 the conflict misses for v can be reduced to zero by allocating u, v and w in the order
V,W,u.

263-2300-00 SS17 / Assignment 4 Pg 2 of 6 Computer Science

Instructor: Markus Piischel ETH Zurich

3. (50 pts) Roofline
We consider a Intel Core i7 4700K processor, as such it has the following specifications

e The processor is a Haswell micro architecture
e Memory bandwidth is 13 GB/s.

e Cache with 64-byte cache line size.

e CPU frequency is 3.5 GHz.

(a) Draw a roofline plot for double precision floating point operations on the given hardware. The units
for z-axis and y-axis are flops/byte and flops/cycle, respectively. Draw one roof each for the following
scenarios

e using FMAs
e using vectorized FMA’s

(b) Consider the execution of the following three kernels on the platform above (vector z and y have size N,
matrices A, B and C' have size N x N). Assume a cold cache scenario and sizes for N such that the whole
working set of each kernel fits into cache once its loaded. Both vectors and the matrices are cache-aligned
(first element goes into first cache block). The kernels are executed separately (different processes and
no interaction between them). Assume that variables i, j, k and N are stored in registers, and ignore the
integer operations. Assume that no optimizations that change operational intensity are performed (the
code stays as is) and assume that only kernell and kernel2 can be vectorized, but not kernel3:

// you can assume vectorization
void kernell (double *x, double *y, const int N) {
for (int i = 0; i < N; ++i)
x[i] = 1.1 * y[i]l + 3.1;
}

Tk W N~

// A,B and C are N*N matrices
// you can assume vectorization
void kernel2(double * A, double * B, double * C, const int N) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
C[i * N + j] += A[i * N + k] * B[j * N + k];

0O Utk WN

// A,B and C are N*N matrices, t is a N sized vector
// assume the compiler can not vectorize this!
void kernel3 (double * A, double * B, double * C, double * t, const int N) {
for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++) {

t[N - k - 1] += A[i * N + k] * B[j *x N + k];
Cli = N + jl += t[(k + 1) % N] * 1.1;

}
}

O O 000U W

—_

For each of the kernels,

i. Derive the operational intensity (counting reads and writes - keep in mind that we are in a write-
allocate scenario) and locate it in your roofline plot.
ii. For each of the kernels derive the maximal theoretical achievable performance on this platform given
their operational intensity. (Assume that kernel3 is not vectorized!)
(c) For each of the three kernels, assuming that we change the data type from double to float

e what are the new operational intensities?

e what are the new theoretical bounds on the performance? (Hint: Think about the change for
vectorized code)

Solution

263-2300-00 SS17 / Assignment 4 Pg 3 of 6 Computer Science
Instructor: Markus Piischel ETH Zurich

(a) Haswell has two FMA units, each of them capable of processing 4 doubles. As FMA is counted as two
flops, we can do 16 flops at the same time when using the vectorized FMAs, and 4 flops when we use
the scalar FMAs. The bandwidth is 13 GB/s and the frequency of the CPU is 3.5GHz, therefore the
bandwidth expressed in bytes per cycle is 13/3.5 = 3.71 bytes/cycle. Figure 1 shows the two roofline
plots.

e Figure 1(a): In the scalar FMA, the ridge is defined at 4/3.71 = 1.08 flops/byte.
e Figure 1(b): In the vectororized FMA, the ridge is defined at 16/3.71 = 4.31 flops/byte.

CPU: Intel(R) Core(TM) i7-4700K @ 3.5 GHz CPU: Intel(R) Core(TM) i7-4700K @ 3.5 GHz
Bandwith: 13 GBytes/s Bandwith: 13 GBytes/s
Performance [Flops / Cycle] Performance [Flops / Cycle]

! !
' '

' '

; ' [Ridge /B = 4.31
! Peak 1 = 16 [Flops / Cycle] !

' T

!

'

!

'

Ridge /B = 1.08
Peak 1 = 4 [Flops / Cycle] !

1
'
1
'
'
1
1
'
d
'
i
1
'
1
'
i
'

-
i
1
'
1
'
i
1
1
'
'
1
'
'
1
1
1
'
'
'
'
1
1
1

25 24 -3 "2 2 2" ral 2"2 "3 2 25 25 24 3 *-2 2 2" Pl 222 "3 2 25
Operational Intensity [Flops / Byte] Operational Intensity [Flops / Byte]

(a) Scalar FMA (b) Vectorized FMA

Figure 1: Roofline plot for scalar and vectorized FMA

(b) Note that the whole working set of each kernel fits the cache. Therefore we would experience only manda-
tory cache misses, and the memory will be loaded into the cache only once. Since we are in a write-allocate
scenario, upon each write-miss, memory location is loaded in the cache, and then write is performed. As
a result, the operational intensities are given as:

. _ W(N) _ 2-N _ 1
kernell' O(N) - Q(N) - 8‘(2‘Nreads+Nw7‘ites) - ﬁ

. _ W) _ 2:N3 _ N
kernel2: O(N) = QAN) = 5(NT3y00gef N2) — 16

. _ W) 4-N3 _ _N?
kerneld: O(N) = G(X} = SNZETN,cuus HNTT NV uriics) — SN+

Figure 2 shows location of the 3 kernels on the roofline plot with the calculated operational intensities for
different values of N, assuming maximal theoretical performance.

kernell: Has a constant operational intensity. As a result, this kernel becomes memory bound with
respect to the given CPU bandwidth. This means that for any value of N, the maximal theoretical per-
formance of this kernel will not exceed 0.31 flops/cycle, regardless whether we deal with vectorized or
scalar code, as shown on Figure 2(a) and 2(b).

kernel2: The operational intensity of this kernel is dependent on N. This means that for lower values
of N, the kernel is memory bound. However for big enough N, this kernel is able to reach the maximal

263-2300-00 SS17 / Assignment 4 Pg 4 of 6 Computer Science
Instructor: Markus Piischel ETH Zurich

theoretical performance of the machine. This means that in the scalar version it will reach 4 flops/cycle
and in the vectorized version 16 f/c, as shown on Figure 2(a) and 2(b).

kernel3: Similar to kernel2, this kernel is memory bound for small values of N, and compute bound on
larger values of N as shown on Figure 2(c). Theoretically this kernel could potentially reach the maximal
theoretical bound of 4 f/c. However, due to dependencies, this bound is unrealistic.

(c) Assuming that the double precision floating point data structure is changed with a single precision floating
point structure, the new dependencies are defined as follows:

) W) _ 2N 1
kernell: O(N) = Gixy = 5@ W00 tNaries) = 6
. _ W(N) __ N3 _ N
kernel2: O(N) = Q((N)) — 4-(N2'3mids+Nf,Mw) =3
. _ W) _ 4-N3 _ N?
kerneld: O(N) = G(X) = TONZ3T N oaus TN T Ny urires) — INTD

The new theoretical bounds are such that in the scalar scenario, we can still execute 4 flops / cycles using
the two FMA units on the Haswell CPU. However, things change when we use vectorized code. Namely,
we can now process 8 doubles at a time, making the maximal theoretical performance of the CPU to be
32 flops / cycle. The new theoretical bounds on performance are defined as:

kernell: This kernel still has constant operational intensity and the maximal theoretical performance of
this kernel will not exceed 0.62 flops/cycle, regardless whether we deal with vectorized or scalar code.

kernel2: Similarly to the previous case, this kernel will be memory bound and compute bound for dif-
ferent values of N. However for big enough N (N = 96), it will be able to reach the maximal performance
of 32 flops/cycle.

kernel3: This kernel will be memory bound only for N € {1,2, 3,4}, and almost always compute bound.
As a result, the maximal theoretical performance for this kernel will be 4 flops/cycle.

263-2300-00 SS17 / Assignment 4 Pg 5 of 6 Computer Science
Instructor: Markus Piischel ETH Zurich

CPU: Intel(R) Core(TM) i7-4700K @ 3.5 GHz CPU: Intel(R) Core(TM) i7-4700K @ 3.5 GHz
Bandwith: 13 GBytes/s Bandwith: 13 GBytes/s

Performance [Flops / Cycle] Performance [Flops / Cycle]

' '
| |
' ' [Ridge /B = 4.31
' Peak T = 16 [Flops / Cycle] '
: P
Ridge m/B = 1.08
Peak 1 = 4 [Flops / Cycle] !

' f -\ - [?996(4.00%)]

N = 192 (16.00 fic)

213

2n - N =24 (4.00 f/c)[N =48 (4.00 flc)N = 192 (4.00 f/c)] M-
7

g
o5
25 24 23 282 21 2%0 2™ 282 23 2 2% 25 24 23 202 201 2% 2M 202 213 2 25
Operational Intensity [Flops / Byte] Operational Intensity [Flops / Byte]
O kernell M kernel2 O kernell M kernel2
(a) Scalar kernell and kernel2 (b) Vectorized kernell and kernel2

CPU: Intel(R) Core(TM) i7-4700K @ 3.5 GHz
Bandwith: 13 GBytes/s

Performance [Flops / Cycle]

285 24 3 202 201 2%0 28 22 2/3 20 25
Operational Intensity [Flops / Byte]

M kernel3

(c) Scalar kernel3 and kernel2

Figure 2: kernell, kernel2 and kernel3 located on the roofline, assuming maximal theoretical performance

263-2300-00 SS17 / Assignment 4 Pg 6 of 6 Computer Science
Instructor: Markus Piischel ETH Zurich

