
263-2300-00: How To Write Fast Numerical Code
Assignment 3: 100 points

Due Date: Th, March 30th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=3122.
Before submission, you must enroll in the Moodle course.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s, Gagandeep’s or Georg’s office. Late homeworks have to be submitted electronically by email to the
fastcode mailing list.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Neatness)
5% of the points in a homework are given for neatness.

• (Using Student Labs for measurements - CAB H 56 / CAB H 57)
The student labs are now setup with a special kernel image to ensure precise measurements. We have disabled
Intel Turbo Boost Technology, disabled Intel Hyper-Threading Technology, isolated the last core from the
Linux scheduler, and installed Linux Perf to enable access to core specific counters. This allows you to run
your experiments such that you pin the executable to the highest available core. Note that this setup does
not prevent preemption, but reduces the noise imposed by context switching. To access this setup, turn on
(restart) the student machines and choose:

[for 263 -2300] Red Hat Enterprise Linux Workstation ...

Exercises:

1. Matrix Computation (30 pts) Code needed
In this exercise, we consider the following matrix computation:

1 void matrix_computation(double *C, double *A, double *B, int n) {

2 int i,j,k;

3 for (i = 0; i < n; i++){

4 for (j = 0; j < n; j++){

5 double sum = 0;

6 for(k = 0; k < n; k++)

7 sum = sum + fmin(A[n*i+k]*B[n*k+j],B[n*i+k]*A[n*k+j]);

8 C[i][j] = sum;

9 }

10 }

11 }

where A, B and C are floating point matrices of size N×N where N ∈ {100, 200, . . . , 1500}. All entries
in A and B are randomly initialized. We provide a code skeleton containing a scalar implementation
of the above computation in src/comp sisd.c . Provide SSE and AVX based implementation of
the computation in files src/comp sse.c and src/comp avx.c respectively. Try to optimize your

263-2300-00 SS17 / Assignment 3
Instructor: Markus Püschel

Pg 1 of 4 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=3122
http://www.rauminfo.ethz.ch/Rauminfo/grundrissplan.gif?gebaeude=CAB&geschoss=H&raumNr=56&lang=en
http://www.rauminfo.ethz.ch/Rauminfo/grundrissplan.gif?gebaeude=CAB&geschoss=H&raumNr=57&lang=en
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw03files/Matrix_Computation.zip


code as much as possible. Make sure to validate your code using the validation framework provided in
the skeleton.

What speedup do you achieve? Explain your observed performance.

How to compile

mkdir build

cd build

cmake ..

cd ..

cmake --build build --config Release

When running on CAB H 56 / CAB H 57 machines (or if you prefer Linux Perf on your machine):

mkdir build

cd build

cmake3 -DLINUX_PERF =1 ..

cd ..

cmake3 --build build --config Release

Note that the student labs required cmake3 (since this project requires version 3.0.2+) while cmake is
mapped to older version (2.8.12.2). If all else fails, the “failback” mode is still present:

mkdir build

cd build

cmake -DRDTSC_FAILBACK =1 ..

cd ..

cmake --build build --config Release

Solution:

One possible solution is available here.

0

2

4

6

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
N

SISD

SSE

AVX

Intel(R) Core(TM) i7-4771 CPU @ 3.50GHz
L1: 32KB, L2: 256KB, L3: 8MB
Compiler: gcc version 5.2, OS: Ubuntu 16.04

Performance [F/C]

Figure 1: Performance of AVX, SSE vectorized and scalar version of matrix computation function on a
Haswell CPU (L1: 32 KB, L2: 256 KB and L3: 8192 KB). The code was compiled with gcc 5.2.1 with O3

enabled, no FMAs and no auto-vectorization.

We perform blocking to speedup vectorized code. The code accesses two blocks from matrix A, B

and one block from C per iteration. We use different block lengths BLAik, BLAkj , BLBik, BLBkj

and BLCij for matrices. For SSE version, BLAik = BLBik = 400, BLAkj = BLBkj = 1000, and

263-2300-00 SS17 / Assignment 3
Instructor: Markus Püschel

Pg 2 of 4 Computer Science
ETH Zurich

http://www.rauminfo.ethz.ch/Rauminfo/grundrissplan.gif?gebaeude=CAB&geschoss=H&raumNr=56&lang=en
http://www.rauminfo.ethz.ch/Rauminfo/grundrissplan.gif?gebaeude=CAB&geschoss=H&raumNr=57&lang=en
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw03files/Matrix_Computation_sol.zip


BLCij = 1000 whereas for AVX version, BLAik = BLBik = 2000, BLAkj = BLBkj = 10000 and
BLCij = 2000. As a result, the blocks fit into L2 cache. We further unroll the blocked k-loop by a
factor of 4 which boosts the performance. The speedup due to SSE and AVX varies between 10-15x
and 13-20x respectively. The performance drops when one of the matrix does not fit in L3 cache.

2. MVM (30 pts) Code needed
Your task is to vectorize the code for a 10× 10 MVM y = Ax: Implement the function vec mvm10 in
mvm10.c using AVX intrinsics; you can use any load or store instruction. Implement the function:

vec_mvm10(float const * A, float const * x, float * y);

You can assume all arrays are 32-byte aligned. Submit your mvm10.c file including the vectorized
variant. Make sure its vectorized using AVX!

Solution

One possible solution is available here.

3. Power Function (35 pts) Code needed
Your task is to use AVX / AVX2 and implement a power function without a single if / switch

branch instruction and no recursion. Assume that the function is given in the form:

double power_avx (double x, uint32_t exponent );

We provide a reference implementation of a power scalar (double x, uint32 t exponent) function
(recursive). Assume that 0 ≤ exponenent ≤ 232− 1. Follow the same compilation steps as in Exercise
1. Also assume that both performance and complexity optimizations are valid and do not use intrinsics
such as mm256 exp pd, or any available intrinsics that perform exponential / logarithmic operations.
Note that we do not expect binary compatibility upon validation, and relative error will be sufficient
for this simple exercise.

What speed up do you obtain? Can you beat the implementation in math.h? Why?

Hint: You should be able to implement the function using addition, subtraction and multiplication
from the arithmetic intrinsics, as well as any relational, logical and bitwise intrinsics.

Solution:

One possible solution is available here.

We benefit from the fact that the exponent is a 32-bit integer number. Therefore, to calculate xn,
we calculate x20 , x21 , x22 , x23 , . . . x231 and use the bit-mask of the exponent to multiply those values.
Therefore, our implementation runs in constant time, without any need for branching.

Our implementation of pow, on average, is faster than the one of libc in the magnitude of about 30
cycles, with the provided input data, as shown in Figure 2.

The math.h implementation of pow is input dependent, and depending on the compilation flags of the
pre-compiled libc, it could result with various of implementation. In the very worst case scenario, a
non-vectorized implementation of pow takes about 200 lines of code shown here. This means that on
some input data, this function will be much faster, and much slower on other input data. Therefore
the speed of pow on this particular input data will depend on the random number generator, libc
version, as well as compiler version and OS calling conventions.

The comparison is not fair, since the compiler can inline our implementation of pow, while math.h

implementation will never be inlined. This means that the loss of 30 cycles could as well be result of
the overhead of calling the function and casting the 32-bit integer into a double. Finally, the math.h

implementation will be able to handle overflows, underflows, exceptions and many other corner cases
of IEEE-745, which our code can not. Also, it will result with increased precision in the calculation.

Nevertheless, for this particular input data, and for this particular precision requirements, our tailored
AVX implementation can win over the generic implementation, which is really important for writing
fast numerical code.

263-2300-00 SS17 / Assignment 3
Instructor: Markus Püschel

Pg 3 of 4 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw03files/mvm.zip
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw03files/mvm10-sol.c
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw03files/power.zip
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw03files/pow_avx.h
https://github.com/bminor/glibc/blob/master/sysdeps/ieee754/dbl-64/e_pow.c


==============================================================

= Linux Perf Initializing

==============================================================

Core 0 : online

Core 1 : online

Core 2 : online

Core 3 : online

Core 4 : offline

Core 5 : offline

Core 6 : offline

Core 7 : offline

Scheduling on core: 3

using libpfm4: 262144

Detected PMU models:

[18, ix86arch , "Intel X86 architectural PMU"]

[51, perf , "perf_events generic PMU"]

[114, perf_raw , "perf_events raw PMU"]

[200, skl , "Intel Skylake"]

Total events: 5739 available , 160 supported

Name : CPU_CLK_THREAD_UNHALTED (Intel Skylake)

Description : Count core clock cycles whenever the clock

signal on the specific core is running (not halted)

Code : 0x3c

==============================================================

= Using Linux Perf

==============================================================

math_pow : 207.068359

pow_scalar: 275.273438

pow_avx : 173.605469

Validated!

Figure 2: Cycle count of pow avx executed on Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, compiled with
gcc version 4.8.5 20150623 (Red Hat 4.8.5-11), using -O3 -march=core-avx2, running on Red Hat Enterprise
Linux Workstation release 7.3 (Maipo), glibc version 2.17

263-2300-00 SS17 / Assignment 3
Instructor: Markus Püschel

Pg 4 of 4 Computer Science
ETH Zurich


