
263-2300-00: How To Write Fast Numerical Code
Assignment 1: 100 points

Due Date: Th, March 9th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=3122.
Before submission, you must enroll in the Moodle course.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s, Georg’s or Gagandeep’s office. Late homeworks have to be submitted electronically by email to the
fastcode mailing list.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Code)
When compiling the final code, ensure that you use optimization flags. Disable SSE/AVX for this exercise
when compiling. Under Visual Studio you will find it under Config / Code Generator / Enable Enhanced In-
structions (should be off). With gcc their are several flags: use -mno-abm (check the flag), -fno-tree-vectorize
should also do the job.

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. (20 pts) Get to know your machine
Determine and create a table for the following microarchitectural parameters of your computer.

(a) Processor manufacturer, name, and number.

(b) Number of CPU logical and physical cores.

(c) CPU-core frequency.

(d) CPU maximum frequency. Does your CPU support Intel Turbo Boost Technology?

(e) Tick or tock model?

For one core and without considering SSE/AVX:

(d) Latency/Throughput/Gap for floating point additions.

(e) Latency/Throughput/Gap for floating point multiplications.

(f) Latency/Throughput/Gap for the rcp instruction (if supported).

(g) Latency/Throughput/Gap for fused multiply - add (FMA) operations (if supported).

(h) Maximum theoretical floating point peak performance in both flop/cycle and Gflop/s.

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 1 of 4 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=3122

Notes:

• Intel calls throughput what is in reality the gap = 1/throughput.

• The manufacturer’s website will contain information about the on-chip details. (e.g. Intel 64 and
IA-32 Architectures Optimization Reference Manual).

• On Unix/Linux systems, typing cat /proc/cpuinfo in a shell will give you enough information
about your CPU for you to be able to find an appropriate manual for it on the manufacturer’s
website (typically AMD or Intel).

• For Windows 7/10 “Control Panel/System and Security/System” will show you your CPU, for
more info ”CPU-Z” will give a very detailed report on the machine configuration.

• For Mac OS X there is “MacCPUID”.

• Throughout this course, we will consider the FMA instruction as two floating point operations.

2. (10 pts) Cost analysis

Consider the following algorithm for calculating the sum of first 2n terms in the cot−1(1
x) series (we

assume n > 1):

1 double calc (int n, double x) {

2 double num1 = x, num2 = num1*x*x;

3 int den1 = 1, den2 = 3;

4 double sum = num1/(double)den1 - num2/(double)den2;

5 while (den1 < 4*n - 4){

6 num1 = num1 * x * x * x * x;

7 num2 = num1 * x * x;

8 den1 = den1 + 4;

9 den2 = den2 + 4;

10 sum = sum + num1/(double)den1 - num2/(double)den2;

11 }

12 return sum;

13 }

(a) Define a suitable detailed floating point cost measure C(n).

(b) Compute the cost C(n) of the function calc.

3. (25 pts) Matrix multiplication

In this exercise, we provide a C source file for multplying two matrices of size n and a C header file that
times matrix multiplication using different methods under Windows and Linux (for x86 compatibles).

(a) Inspect and understand the code.

(b) Determine the exact number of (floating point) additions and multiplications performed by the
compute() function in mmm.c.

(c) Using your computer, compile and run the code (Remember to turn off vectorization as explained
on page 1!). Ensure you get consistent timings between timers and for at least two consecutive
executions.

(d) Then, for all square matrices of sizes n between 100 and 1500, in increments of 100, create a plot
for the following quantities (one plot per quantity, so 3 plots total). n is on the x-axis and on the
y-axis is, respectively,

i. Runtime (in cycles).

ii. Performance (in flops/cycle).

iii. Using the data from exercise 1, percentage of the peak performance (without vector instruc-
tions) reached.

(e) Briefly discuss your plots.

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 2 of 4 Computer Science
ETH Zurich

https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.cpuid.com/softwares/cpu-z.html
https://software.intel.com/en-us/articles/download-maccpuid
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw01files/mmm.c
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw01files/tsc_x86.h

4. (20 pts) Performance Analysis

Consider the funciton babs:

1 inline double babs (double x) {

2 union { uint64_t i; double d; } u = { .d = x };

3 u.i = u.i & 0x7FFFFFFFFFFFFFFF;

4 return u.d;

5 }

Assume that the elements of vectors x, y, u and z of length n are combined as follows:

zi = zi + xi · yi + ui · yi + xi · zi + babs(ui · xi) .

(a) Write a C/C++ compute() function that performs the computation described above on arrays of
doubles. Save the file as combine.c(pp).

(b) Within the same file create a benchmarking infrastructure based on the timing function that
produces the most consistent results in Exercise 3.

(c) Then, for all two-power sizes n = 24, . . . , 222 create performance plot with n on the x-axis (choose
logarithmic scale) and performance (in flops/cycle) on the y-axis. Create two series such that the
first has all optimization flags disabled, and the second serie has all optimizations flags enabled
(except for vectorization). Randomly initialize all arrays. For all n repeat your measurements 30
times reporting the median in your plot.

(d) If you have an Intel processor, run the same tests again, such that you make sure that Intel Turbo
Boost is disabled (or enable it if the previous plot was generated with Turbo Boost disabled).

(e) Briefly explain eventual performance variations in your plot and the effects of Turbo Boost.

5. (20 pts) Bounds

Consider the three artificial computations below. The functions operate on a input vector and store
the results in an output array:

1 void artcomp1(float x[], float y[], int N) {

2 for (int i = 0; i < N; i++)

3 y[i] = x[i] * 1.3 + y[i];

4 }

5 void artcomp2(float x[], float y[], int N) {

6 float len = N/2; // assume 2 divides N

7 for (int i = 0; i < 2 * len; i += 2) {

8 y[i] = x[i] * 1.4;

9 y[i + 1] = x[i + 1] + 1.4; }

10 }

11 void artcomp3(float x[], float y[], float z[], int N) {

12 float len = N/3; // assume 3 divides N

13 for (int i = 0; i < 3 * len; i += 3) {

14 y[i] = x[i] * z[i];

15 y[i + 1] = x[i + 1] * z[i+1];

16 y[i + 2] = x[i + 2] + 3.3; }

17 }

We consider a Core i7 CPU based on a Haswell processor. As seen in the lecture, it offers FMA
instructions (as part of AVX2) that compute y = a * x + b on floating point numbers. Consider
the information from the lecture slides on the throughput of the according operations. Assume that
divisions are performed with the regular div on Port 0. Assume the bandwidths that are given in the
additional material from the lecture: Abstracted Microarchitecture

(a) Determine the exact cost (in flops) of each function.

(b) Determine an asymptotic upper bound on the operational intensity (assuming empty caches and
considering both reads and writes) of each function

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 3 of 4 Computer Science
ETH Zurich

http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring17/slides/arch.pdf

(c) Consider only one core and determine, for each function, a hard lower bound (not asymptotic) on
the runtime (measured in cycles), based on:

i. The op count. Assume that the code is compiled using gcc with the following flags:
-fno-tree-vectorize -mfma -march=core-avx2 -O3 and that FMAs are used as much as
possible. Be aware that the lower bound is also affected by the available ports offered for the
according computation. (see lecture slides)

ii. Loads, for each of the following cases: All floating point data is L1-resident, L2-resident,
L3-resident, and RAM-resident. Consider best case scenario (peak bandwidth).

How to disable Intel Turbo Boost

Intel Turbo Boost is a technology implemented by Intel in certain versions of its processors that enables
the processor to run above its base operating frequency via dynamic control of the processor’s clock
rate. It is activated when the operating system requests the highest performance state of the processor.

BIOS

Intel Turbo Boost Technology is typically enabled by default. You can only disable and enable the
technology through a switch in the BIOS. No other user controllable settings are available. Once
enabled, Intel Turbo Boost Technology works automatically under operating system control. When
access to BIOS is not available, few workarounds are possible:

Linux

Linux does not provide interface to disable Turbo Boost. One alternative, that works, is disabling
Turbo Boost by writing into MSR registers. Assuming 2 cores, the following should work:

wrmsr -p0 0x1a0 0x4000850089

wrmsr -p1 0x1a0 0x4000850089

To enable it:

wrmsr -p0 0x1a0 0x850089

wrmsr -p1 0x1a0 0x850089

This method has been criticized here and, here stating that the OS can circumvent the MSR value,
using opportunistic strategy. But so far in our tests, we have observed that Linux conforms to the
MSR value. An alternative method would be to use cpupower, as explained in the ArchLinux Wiki,
as well as the the intel pstate driver. Unfortunately, we can not confirm deterministic behavior across
different kernel versions with this method.

Mac OS X

Disabling Turbo Boost in OS X can be done easily with the Turbo Boost Switcher for OS X. Note that
the change is not persistent after restart. The method also writes to the MSR register, and shares the
same weaknesses as the Linux approach.

Windows

Windows does not provide any functionality to disable Intel Turbo Boost. The only effective way of
disabling is using the BIOS. On some Intel machines however, it is possible to fix the CPU multiplier
such that the resulting frequency corresponds to the nominal frequency of the CPU. ThrottleStop
provides this functionality with a convenient GUI. “Disable Turbo” will effectively fix the frequency
such that it corresponds to a behaviour of a CPU with disabled Turbo Boost.

263-2300-00 SS17 / Assignment 1
Instructor: Markus Püschel

Pg 4 of 4 Computer Science
ETH Zurich

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/392792
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/385319
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
http://www.rugarciap.com/turbo-boost-switcher-for-os-x/
https://www.techpowerup.com/download/techpowerup-throttlestop/

