
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

How to Write Fast Numerical Code
Spring 2016
Lecture: Autotuning and Machine Learning

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Overview

 Rough classification of autotuning efforts seen in course

 Use of machine learning

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

search used

no search used

PhiPac/ATLAS: MMM Generator
Whaley, Bilmes, Demmel, Dongarra, …

Blocking improves locality

a b

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

PhiPac/ATLAS: MMM Generator

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

source: Pingali, Yotov, Cornell U.

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

ATLAS
MMM generator

search used

no search used

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

FFTW: Discrete Fourier Transform (DFT)
Frigo, Johnson

Installation

configure/make

Usage

d = dft(n)

d(x,y)

Twiddles

Search for fastest
computation strategy

n = 1024

16 64

8 8

radix 16

radix 8
base case

base case base case

FFTW: Codelet Generator
Frigo

DFT codelet generator

n

dft_n(*x, *y, …)

fixed size DFT functions
straightline code

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

FFTW codelet
generator

ATLAS
MMM generator

FFTW adaptive
library

search used

no search used

OSKI: Sparse Matrix-Vector Multiplication
Vuduc, Im, Yelick, Demmel

 Blocking for registers:

 Improves locality (reuse of input vector)

 But creates overhead (zeros in block)

*=

* =

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

OSKI: Sparse Matrix-Vector Multiplication

Gain by blocking (dense MVM) Overhead by blocking

* =

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

FFTW codelet
generator

ATLAS
MMM generator

FFTW adaptive
library

search used

no search used

OSKI
sparse MVM

OSKI
sparse MVM

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

FFTW codelet
generator

ATLAS
MMM generator

FFTW adaptive
library

Machine learningMachine learning

search used

no search used

OSKI
sparse MVM

OSKI
sparse MVM

Overview

 Rough classification of autotuning efforts seen in course

 Use of machine learning I [de Mesmay et al., IPDPS 2010]

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Installation

configure/make

Use

d = dft(n)

d(x,y)
Twiddles

Online tuning
(time of use)

Offline tuning
(time of installation)

Goal

for a few n: search
learn decision trees

Installation

configure/make

Use

d = dft(n)

d(x,y)

Twiddles

Search for fastest
computation strategy

Library Structure: Examples

DFT: scalar code

DFT: full-fledged (vectorized and parallel code)

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Library Structure: Examples

DFT: scalar code

n = 16

4 4

2 2

no base case
radix 4

no base case
radix 2

base case

base case base case

Recursive choice:

n = 2k base case?
radix?

Example selections for n = 16:

Library Structure: Examples
DFT: full-fledged (vectorized and parallel code)

n = 1024

16 64

8 8

no base case
radix 16
threading!
4 threads
twiddles on the fly
no loop exchange

no base case
radix 8
…

base case

base case base case

Recursive choice:

n = 2k

base case?
radix?
threading?
#threads?
twiddles?
loop exchange?

Example selections for n = 1024:

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Our Work

Upon installation, generate decision trees for each choice

Example:

Statistical Classification: C4.5
Features (events)

C4.5

P(play|windy=false) = 6/8

P(don’t play|windy=false) = 2/8

P(play|windy=true) = 1/2

P(don’t play|windy=false) = 1/2

H(windy=false) = 0.81

H(windy=true) = 1.0

H(windy) = 0.89

H(outlook) = 0.69
H(humidity) = …

Entropy of Features

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Application to Libraries

 Features = arguments of functions (except variable pointers)

 At installation time:

 Run search for a few input sizes n

 Yields training set: features and associated decisions
(several for each size)

 Generate decision trees using C4.5 and insert into library

dft(int n, cpx *y, cpx *x)

dft_strided(int n, int istr, cpx *y, cpx *x)

dft_scaled(int n, int str, cpx *d, cpx *y, cpx *x)

Experimental Setup

 3GHz Intel Xeon 5160 (2 Core 2 Duos = 4 cores)

 Linux 64-bit, icc 10.1

 Libraries:

 IPP 5.3

 FFTW 3.2 alpha 2

 Spiral-generated library

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Learning works as expected

“All” Sizes

 All sizes n ≤ 218, with prime factors ≤ 19

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

“All” Sizes

 All sizes n ≤ 218, with prime factors ≤ 19

 Higher order fit of all sizes

Message of Lecture

 Machine learning should be used in autotuning

 Overcomes the problem of expensive searches

 Relatively easy to do

 Applicable to any search-based approach

 Removes searches or better searches

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

Machine learningMachine learning

