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TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Overview

 Rough classification of autotuning efforts seen in course

 Use of machine learning
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PhiPac/ATLAS: MMM Generator
Whaley, Bilmes, Demmel, Dongarra, … 

Blocking improves locality

a b

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}
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PhiPac/ATLAS: MMM Generator

Detect
Hardware

Parameters

ATLAS 
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

source: Pingali, Yotov, Cornell U.
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FFTW: Discrete Fourier Transform (DFT)
Frigo, Johnson

Installation

configure/make

Usage

d = dft(n)

d(x,y)

Twiddles

Search for fastest 
computation strategy

n = 1024

16 64

8 8

radix 16

radix 8
base case

base case base case

FFTW: Codelet Generator
Frigo

DFT codelet generator

n

dft_n(*x, *y, …)

fixed size DFT functions
straightline code
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OSKI: Sparse Matrix-Vector Multiplication
Vuduc, Im, Yelick, Demmel

 Blocking for registers:

 Improves locality (reuse of input vector)

 But creates overhead (zeros in block)

*=

* =
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OSKI: Sparse Matrix-Vector Multiplication

Gain by blocking (dense MVM) Overhead by blocking

* =

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)
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Overview

 Rough classification of autotuning efforts seen in course

 Use of machine learning I [de Mesmay et al., IPDPS 2010]
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Installation

configure/make

Use

d = dft(n)

d(x,y)
Twiddles

Online tuning
(time of use) 

Offline tuning
(time of installation)

Goal

for a few n: search 
learn decision trees

Installation

configure/make

Use

d = dft(n)

d(x,y)

Twiddles

Search for fastest 
computation strategy

Library Structure: Examples

DFT: scalar code

DFT: full-fledged (vectorized and parallel code)
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Library Structure: Examples

DFT: scalar code

n = 16

4 4

2 2

no base case
radix 4

no base case
radix 2

base case

base case base case

Recursive choice:

n = 2k base case?
radix?

Example selections for n = 16:

Library Structure: Examples
DFT: full-fledged (vectorized and parallel code)

n = 1024

16 64

8 8

no base case
radix 16
threading!
4 threads
twiddles on the fly
no loop exchange

no base case
radix 8
…

base case

base case base case

Recursive choice:

n = 2k

base case?
radix?
threading?
#threads?
twiddles?
loop exchange?

Example selections for n = 1024:
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Our Work

Upon installation, generate decision trees for each choice

Example:

Statistical Classification: C4.5
Features (events)

C4.5

P(play|windy=false) = 6/8

P(don’t play|windy=false) = 2/8

P(play|windy=true) = 1/2

P(don’t play|windy=false) = 1/2

H(windy=false) = 0.81

H(windy=true) = 1.0

H(windy) = 0.89

H(outlook) = 0.69
H(humidity) = …

Entropy of Features
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Application to Libraries

 Features = arguments of functions (except variable pointers)

 At installation time:

 Run search for a few input sizes n

 Yields training set: features and associated decisions
(several for each size)

 Generate decision trees using C4.5 and insert into library

dft(int n, cpx *y, cpx *x)

dft_strided(int n, int istr, cpx *y, cpx *x)

dft_scaled(int n, int str, cpx *d, cpx *y, cpx *x)

Experimental Setup

 3GHz Intel Xeon 5160 (2 Core 2 Duos = 4 cores)

 Linux 64-bit, icc 10.1

 Libraries: 

 IPP 5.3

 FFTW 3.2 alpha 2

 Spiral-generated library
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Learning works as expected

“All” Sizes

 All sizes n ≤ 218, with prime factors ≤ 19
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“All” Sizes

 All sizes n ≤ 218, with prime factors ≤ 19

 Higher order fit of all sizes

Message of Lecture

 Machine learning should be used in autotuning

 Overcomes the problem of expensive searches

 Relatively easy to do

 Applicable to any search-based approach

 Removes searches or better searches
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Machine learningMachine learning


