How to Write Fast Numerical Code

Spring 2016

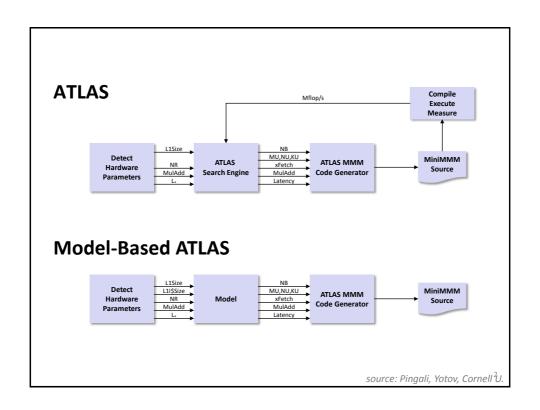
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Principles

- Optimization for memory hierarchy
 - Blocking for cache
 - Blocking for registers
- Basic block optimizations
 - Loop order for ILP
 - Unrolling + scalar replacement
 - Scheduling & software pipelining
- Optimizations for virtual memory
 - Buffering (copying spread-out data into contiguous memory)
- Autotuning
 - Search over parameters (ATLAS)
 - Model to estimate parameters (Model-based ATLAS)
- All high performance MMM libraries do some of these (but possibly in a different way)

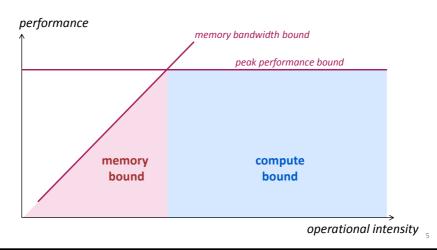
-

Today

- Memory bound computations
- Sparse linear algebra, OSKI

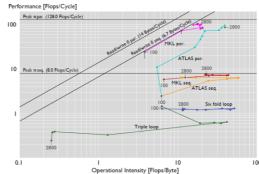
Memory Bound Computation

- Data movement, not computation, is the bottleneck
- Typically: Computations with operational intensity I(n) = O(1)

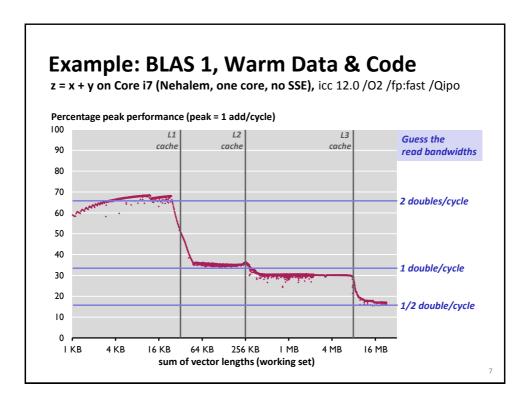


Memory Bound Or Not? Depends On ...

- The computer
 - Memory bandwidth
 - Peak performance
- How it is implemented
 - Good/bad locality
 - SIMD or not



- How the measurement is done
 - Cold or warm cache
 - In which cache data resides
 - See next slide



Sparse Linear Algebra

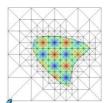
- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop/OSKI

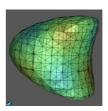
References:

- Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004
- Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.;
 Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply,
 pp. 26, Supercomputing, 2002
- Sparsity/Bebop website

Sparse Linear Algebra

- Very different characteristics from dense linear algebra (LAPACK etc.)
- Applications:
 - finite element methods
 - PDE solving
 - physical/chemical simulation (e.g., fluid dynamics)
 - linear programming
 - scheduling
 - signal processing (e.g., filters)
 - ..
- Core building block: Sparse MVM





Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/clays/ projects/unfitted-meshes_en.html

Sparse MVM (SMVM)

y = y + Ax, A sparse but known

- Typically executed many times for fixed A
- What is reused (temporal locality)?
- Upper bound on operational intensity?

Storage of Sparse Matrices

- Standard storage is obviously inefficient: Many zeros are stored
 - Unnecessary operations
 - Unnecessary data movement
 - Bad operational intensity
- Several sparse storage formats are available
- Most popular: Compressed sparse row (CSR) format
 - blackboard

1

CSR

- Assumptions:
 - A is m x n
 - K nonzero entries

- Storage:
 - K doubles + (K+m+1) ints = $\Theta(\max(K, m))$
 - Typically: Θ(K)

Sparse MVM Using CSR

y = y + Ax

CSR + sparse MVM: Advantages?

1

CSR

Advantages:

- Only nonzero values are stored
- All three arrays for A (values, col_idx, row_start) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to y

Disadvantages:

- Insertion into A is costly
- Poor temporal locality with respect to x

Impact of Matrix Sparsity on Performance

- Adressing overhead (dense MVM vs. dense MVM in CSR):
 - ~ 2x slower (example only)
- Fundamental difference between MVM and sparse MVM (SMVM):
 - Sparse MVM is input dependent (sparsity pattern of A)
 - Changing the order of computation (blocking) requires changing the data structure (CSR)

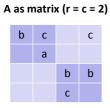
1.

Bebop/Sparsity: SMVM Optimizations

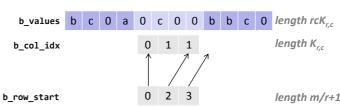
- Idea: Blocking for registers
- Reason: Reuse x to reduce memory traffic
- Execution: Block SMVM y = y + Ax into micro MVMs
 - Block size r x c becomes a parameter
 - Consequence: Change A from CSR to r x c block-CSR (BCSR)
- BCSR: Blackboard

BCSR (Blocks of Size r x c)

- Assumptions:
 - A is m x n
 - Block size r x c
 - K_{r,c} nonzero blocks



A in BCSR (r = c = 2):



- Storage:
 - $rcK_{r,c}$ doubles + $(K_{r,c}+m/r+1)$ ints = $\Theta(rcK_{r,c})$
 - $rcK_{r,c} \ge K$

17

Sparse MVM Using 2 x 2 BCSR

```
int i, j;
double d0, d1, c0, c1;
  /* loop over bm block rows */
  for (i = 0; i < bm; i++) {</pre>
    d0 = y[2*i];
                    /* scalar replacement since reused */
    d1 = y[2*i+1];
     /* dense micro MVM */
    for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) {
  c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */</pre>
       c1 = x[2*b\_col\_idx[j]+1];
      d0 += b_values[0] * c0;
d1 += b_values[2] * c0;
      d0 += b_values[1] * c1;
      d1 += b_values[3] * c1;
    y[2*i]
    y[2*i+1] = d1;
}
```

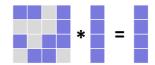
BCSR

Advantages:

- Temporal locality with respect to x and y
- Reduced storage for indexes

Disadvantages:

- Storage for values of A increased (zeros added)
- Computational overhead (also due to zeros)

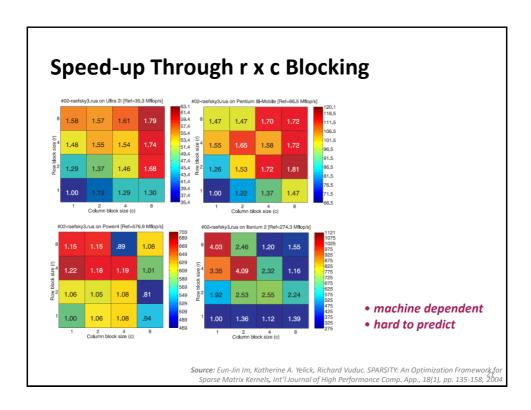


Main factors (since memory bound):

- Plus: increased temporal locality on x + reduced index storage
 reduced memory traffic
- *Minus:* more zeros = increased memory traffic

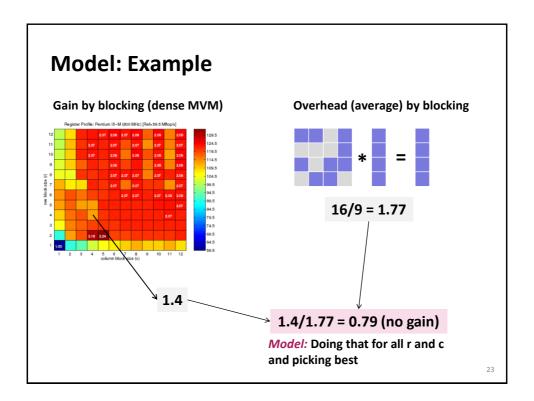
19

Which Block Size (r x c) is Optimal? Matrix 02-raefskv3 Example: 8 20,000 x 20,000 matrix (only part shown) Perfect 8 x 8 block structure 32 No overhead when blocked r x c, with r, c divides 8 40 48 56 64 72 32 40 48 1792 ideal nz + 0 explicit zeros = 1792 nz source: R. Vuduc, LLNL



How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)
- Solution 1: Searching over all $r \times c$ within a range, e.g., $1 \le r,c \le 12$
 - Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
 - Total cost: 1440 SMVMs
 - Too expensive
- Solution 2: Model
 - Estimate the gain through blocking
 - Estimate the loss through blocking
 - Pick best ratio



Model

- Goal: find best r x c for y = y + Ax
- **■** *Gain* through r x c blocking (estimation):

$$G_{r,c} = \frac{dense\ MVM\ performance\ in\ r\ x\ c\ BCSR}{dense\ MVM\ performance\ in\ CSR}$$

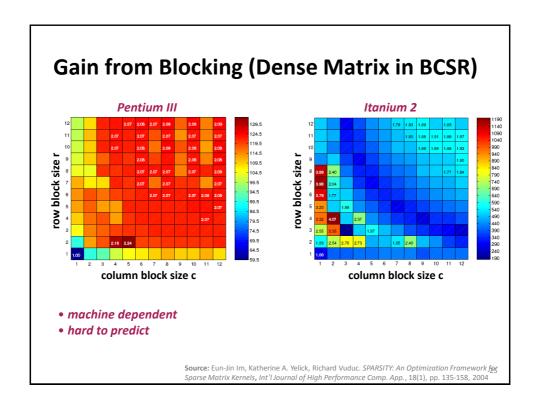
dependent on machine, independent of sparse matrix

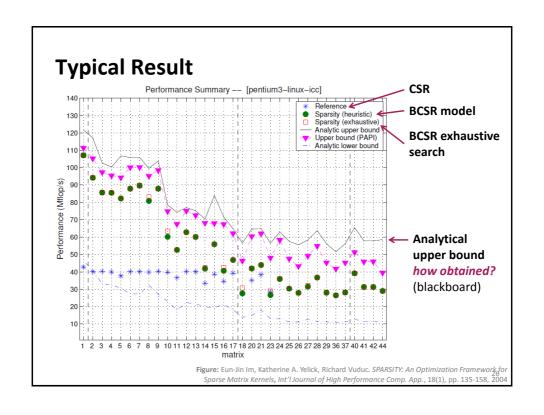
 Overhead through r x c blocking (estimation) scan part of matrix A

$$O_{r,c} = \frac{number\ of\ matrix\ values\ in\ r\ x\ c\ BCSR}{number\ of\ matrix\ values\ in\ CSR}$$

independent of machine, dependent on sparse matrix

■ Expected gain: G_{r,c}/O_{r,c}





Principles in Bebop/Sparsity Optimization

- Optimization for memory hierarchy = increasing locality
 - Blocking for registers (micro-MVMs)
 - Requires change of data structure for A
 - Optimizations are input dependent (on sparse structure of A)
- Fast basic blocks for small sizes (micro-MVM):
 - Unrolling + scalar replacement
- Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)
 - Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

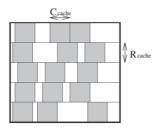
27

SMVM: Other Ideas

- Cache blocking
- Value compression
- Index compression
- Pattern-based compression
- Special scenario: Multiple inputs

Cache Blocking

■ Idea: divide sparse matrix into blocks of sparse matrices

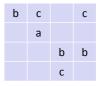


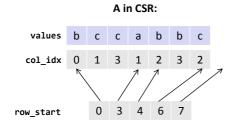
- **Experiments:**
 - Requires very large matrices (x and y do not fit into cache)
 - Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

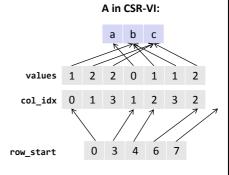
Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Value Compression

- Situation: Matrix A contains many duplicate values
- Idea: Store only unique ones plus index information







Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaged Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008

Index Compression

- Situation: Matrix A contains sequences of nonzero entries
- Idea: Use special byte code to jointly compress col_idx and row_start

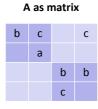
Decoding

0: acc = acc * 256 + arg;
1: col = col + acc * 256 + arg; acc = 0;
emit_element(row, col); col = col + 1;
2: col = col + acc * 256 + arg; acc = 0;
emit_element(row, col);
emit_element(row, col);
3: col = col + acc * 256 + arg; acc = 0;
emit_element(row, col) + 1);
emit_element(row, col) + 1);
emit_element(row, col + 1);
emit_element(row, col + 2); col = col + 3;
4: col = col + acc * 256 + arg; acc = 0;
emit_element(row, col);
emit_element(row, col);
emit_element(row, col) + 1);
emit_element(row, col + 2);
emit_element(row, col + 2);
emit_element(row, col + 3); col = col + 4;
5: row = row + 1; col = 0;

Willcock and Lumsdaine, Accelerating Sparse Matrix Computatigns via Data Compression, pp. 307-316, ICS 2006

Pattern-Based Compression

- Situation: After blocking A, many blocks have the same nonzero pattern
- Idea: Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern



Values in 2 x 2 BCSR

b c 0 a 0 c 0 0 b b c 0

Values in 2 x 2 PBR

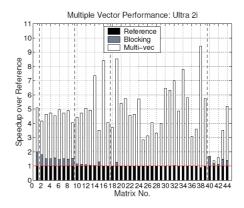
b c a c b b c

+ bit string: 1101 0100 1110

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009

Special scenario: Multiple inputs

- Situation: Compute SMVM y = y + Ax for several independent x
- Blackboard
- Experiments: up to 9x speedup for 9 vectors



Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004