
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

How to Write Fast Numerical Code
Spring 2016
Lecture: Memory hierarchy, locality, caches

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

DFT 2
n

(single precision) on Pentium 4, 2.53 GHz
[Gflop/s]

n

Spiral SSE

Intel MKL

Spiral scalar

Spiral vectorized

Horizontal
y-label

Left alignment
Attractive font (sans serif, avoid Arial)
Calibri, Helvetica, Gill Sans MT, …

Main line
possibly

emphasized
(red, thicker)No y-axis

(superfluous)

Background/grid
inverted for

better layering

No legend; makes decoding easier

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Organization

 Temporal and spatial locality

 Memory hierarchy

 Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

3

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

doubled every 36 months

Core 2 Duo:
Peak performance:
2 SSE two operand ops/cycles
consumes up to 64 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle

Solution: Caches/Memory hierarchy

4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Typical Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

5

1 Core

Abstracted Microarchitecture: Example Core 2 (2008) and Core i7 Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 2 (4)
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
Rectangles not to scale

Hard disk
≥ 0.5 TB

fadd

fmul

ALU

load

store

Main
Memory
(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both:
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle)instruction pool
(up to 96 (168) “in flight”)

execution
units

double FP:
scalar tp:
• 1 add/cycle
• 1 mult/cycle

vector (SSE) tp
• 1 vadd/cycle = 2 adds/cycle
• 1 vmult/cycle = 2 mults/cycle

CISC ops
RISC
μops

issue
6 μops/

cycle

lat: 3 (4)
tp: 2 (4)

lat: 14 (12)
tp: 1 (4)

lat: 100
tp: 1/4

lat: millions
tp: ~1/250

(~1/100)

ISA

Core #1

Core #2

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Core i7 Sandy Bridge:
Core #1

Core #2

Core #3

Core #4

L2

L2

L2

L2

L2

L3

on die

RAM

Core 2 Core i7

256 KB L2 cache
2–8MB L3 cache: lat 26-31, tp 4
RAM: tp 1
vector (AVX) tp
• 1 vadd/cycle = 4 adds/cycle
• 1 vmult/cycle = 4 mults/cycle

out of order execution
superscalar

© Markus Püschel
Computer ScienceSource: Intel manual (chapter 2)

depends
on platform

CB = cache block

depends
on platform

6

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Why Caches Work: Locality

 Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

 Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

memory

memory

7

Example: Locality?

 Data:

 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:

 Temporal: loops cycle through the same instructions

 Spatial: instructions referenced in sequence

 Being able to assess the locality of code is a crucial skill for a
performance programmer

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

8

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Locality Example #1

int sum_array_rows(int a[M][N])
{
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

9

Locality Example #2

int sum_array_cols(int a[M][N])
{
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i][j];

return sum;
}

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Locality Example #3

int sum_array_3d(int a[M][N][K])
{
int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < K; k++)
sum += a[k][i][j];

return sum;
}

How to improve locality?

11

Operational Intensity Again

 Definition: Given a program P, assume cold (empty) cache

 Examples: Determine asymptotic bounds on I(n)

 Vector sum: y = x + y

 Matrix-vector product: y = Ax

 Fast Fourier transform

 Matrix-matrix product: C = AB + C

12

O(1)

O(1)

O(log(n))

O(n)

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Compute/Memory Bound

 A function/piece of code is:

 Compute bound if it has high operational intensity

 Memory bound if it has low operational intensity

 Relationship between operational intensity and locality?

 They are closely related

 Operational intensity only describes the boundary last level
cache/memory

13

Effects

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

.

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single)
Gflop/s

MMM: I(n) ≤ O(n)FFT: I(n) ≤ O(log(n))

Up to 80-90% peak
Performance can be maintained
outside LLC
Cache miss time compensated/hidden
by computation

Up to 40-50% peak
Performance drop outside last level cache (LLC)
Most time spent transferring data

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Cache

 Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

 Naturally supports temporal locality

 Spatial locality is supported by transferring data in blocks

 Core 2: one block = 64 B = 8 doubles

Main
Memory

CPU Cache

15

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

17

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Types of Cache Misses (The 3 C’s)

 Compulsory (cold) miss

Occurs on first access to a block

 Capacity miss

Occurs when working set is larger than the cache

 Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

 Not a clean classification but still useful

19

Cache Performance Metrics

 Miss Rate

 Fraction of memory references not found in cache: misses / accesses
= 1 – hit rate

 Hit Time

 Time to deliver a block in the cache to the processor

 Core 2:
3 clock cycles for L1
14 clock cycles for L2

 Miss Penalty

 Additional time required because of a miss

 Core 2: about 100 cycles for L2 miss

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Cache Structure

 Draw a direct mapped cache (E = 1, B = 4 doubles, S = 8)

 Show how blocks are mapped into cache

21

Example (S=8, E=1)

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;
}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{
int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; i < 16; j++)
sum += a[i][j];

return sum;
} blackboard

Ignore the variables sum, i, j

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Cache Structure

 Add associativity (E = 2, B = 4 doubles, S = 8)

 Show how elements are mapped into cache

23

Example (S=4, E=2)

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

blackboard

Ignore the variables sum, i, j

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;
}

int sum_array_cols(double a[16][16])
{
int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; i < 16; j++)
sum += a[i][j];

return sum;
}

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

25

Cache Read

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Small Example, Part 1

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
for i = 0:7
access(x[i])

Access pattern:
Hit/Miss:

0123456701234567

MHMHMHMHMHMHMHMH

Result: 8 misses, 8 hits
Spatial locality:
Temporal locality:

x[0]

27

yes
no

Small Example, Part 2

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
for i = 0:2:7
access(x[i])

for i = 1:2:7
access(x[i])

Access pattern:
Hit/Miss:

0246135702461357

MMMMMMMMMMMMMMMM

Result: 16 misses
Spatial locality:
Temporal locality:

x[0]

28

no
no

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Small Example, Part 3

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
for k = 0:1
for i = 0:3
access(x[i+4j])

Access pattern:
Hit/Miss:

0123012345674567

MHMHHHHHMHMHHHHH

Result: 4 misses, 12 hits (is optimal, why?)
Spatial locality:
Temporal locality:

x[0]

29

yes
yes

Terminology

 Direct mapped cache:

 Cache with E = 1

 Means every block from memory has a unique location in cache

 Fully associative cache

 Cache with S = 1 (i.e., maximal E)

 Means every block from memory can be mapped to any location in cache

 In practice to expensive to build

 One can view the register file as a fully associative cache

 LRU (least recently used) replacement

 when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

30

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

31

Example: (Blackboard)

 z = x + y, x, y, z vector of length n

 assume they fit jointly in cache + cold cache

 memory traffic Q(n)?

 operational intensity I(n)?

32

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

Locality Optimization: Blocking

 Example: MMM (blackboard)

33

The Killer: Two-Power Strided Working Sets

% t = 1,2,4,8,… a 2-power
% size of working set: n/t
for (i = 0; i < n; i += t)
access(x[i])

for (i = 0; i < n; i += t)
access(x[i])

Cache: E = 2, B = 4 doubles

x[0]

t = 1: t = 2: t = 4: t = 8: t ≥ 4S:

Spatial locality
Temporal locality:
if n/t ≤ C

Some spatial locality
Temporal locality:
if n/t ≤ C/2

No spatial locality
Temporal locality:
if n/t ≤ C/4

No spatial locality
Temporal locality:
if n/t ≤ C/8

No spatial locality
Temporal locality:
if n/t ≤ 2

blackboard

34

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2016

The Killer: Where Can It Occur?

 Accessing two-power size 2D arrays (e.g., images) columnwise

 2d Transforms

 Stencil computations

 Correlations

 Various transform algorithms

 Fast Fourier transform

 Wavelet transforms

 Filter banks

35

Summary

 It is important to assess temporal and spatial locality in the code

 Cache structure is determined by three parameters

 block size

 number of sets

 associativity

 You should be able to roughly simulate a computation on paper

 Blocking to improve locality

 Two-power strides are problematic (conflict misses)

36

