How to Write Fast Numerical Code
Spring 2016
Lecture: Cost analysis and performance

Instructor: Markus Puschel
TA: Gagandeep Singh, Daniele Spampinato & Alen Stojanov

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Technicalities

m Research project: Let us know (fastcode@lists.inf.ethz.ch)
= if you know with whom you will work

= if you have already a project idea
" current status: on the web
= Deadline: March 7th

m If you need partner: fastcode-forum@lists.inf.ethz.ch

m If you need partner and project: fastcode-forum@lists.inf.ethz.ch

© Markus Pischel ETH How to write fast numerical code
Computer Science = Spring 2016

mailto:fastcode@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Piischel ETH
Computer Science s

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Performance [Gflop/s]
50

45

40 —
35
30
25
20
15

10 - - o
5 Vector instructions: 4x
0 ' ‘
0

MMM kernel function

Multiple threads: 4x

Memory hierarchy: 20x

matrix size

m Compiler doesn’t do the job
m Doing by hand: nightmare

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Algorithms

Software

Compilers

Microarchitecture

performance

Performance is different than other software quality features

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zurich

How to write fast numerical code
Spring 2016

ATL_dmm4x2x4_avx.c

© Markus Piischel ETH
Computer Science s

Today

= Problem and Algorithm
= Asymptotic analysis

m Cost analysis

m Standard book: Introduction to Algorithms (2"¢ edition), Corman,
Leiserson, Rivest, Stein, McGraw Hill 2001)

Problem

m Problem: Specification of the relationship between a given input and
a desired output

m Numerical problem (this course): In- and output are numbers
(or lists, vectors, arrays, ... of numbers)

m Examples

= Compute the discrete Fourier transform of a given vector x of length n
® Matrix-matrix multiplication (MMM)

= Compress an n x n image with a ratio ...

= Sort a given list of integers

= Multiply by 5, y = 5%, using only additions and shifts

How to write fast numerical code
Spring 2016

Algorithm

m Algorithm: A precise description of a sequence of steps to solve a
given problem

m Numerical algorithm: Dominated by arithmetic (adds, mults, ...)

= Examples:
" Cooley-Tukey fast Fourier transform (FFT)
= A description of MMM by definition
" JPEG encoding
" Mergesort
B oy=Xx<<2+X

Reminder: Do You Know The O?
m O(f(n))isa..? set
m How are these related? O(f(n) = Q(f(n)) N O(f(n))
= Of(f(n))
= O(f(n))
= Q((f(n))
m O(2")=0(3")? no
m O(log,(n)) = O(logs(n)) yes
m O(nZ+m)=0(n?)? no
© Markus Piischel ETH How to write fast numerical code

Computer Science %

Spring 2016

© Markus Piischel ETH
Computer Science

Always Use Canonical Expressions

m Example:
® not O(2n + log(n)), but O(n)

m Canonical? If not replace:

= 0(100) 0(1)

" O(log,(n)) O(log(n))
= O(n*!+nlog(n)) O(nt1)
= 2n + O(log(n)) yes

= O(2n) + log(n) O(n)

= Q(n log(m) + m log(n)) yes

Asymptotic Analysis of Algorithms & Problems

m Analysis of algorithms for
" Runtime
= Space = memory requirement = memory footprint
= Data movement (e.g., between cache and memory)

m Asymptotic runtime of an algorithm:

= Count “elementary” steps
numerical algorithms: usually floating point operations

= State result in O-notation
" Example MMM (square and rectangular): C= A*B + C

= Runtime complexity of a problem =
Minimum of the runtimes of all possible algorithms
® Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm

10

How to write fast numerical code
Spring 2016

Valid?

m s asymptotic analysis still valid given this?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Performance [Gflop/s]
50

45

a0

35

30

25

20

15

10

5

o =

0 1,000 2,000 3,000 4,000 5.000 8,000 7.000 8.000 9,000

matrix size

All algorithms are O(n®) when counting flops.

What happens to asymptotics if | take memory accesses into account?
No problem: O(f(n)) flops means at most O(f(n)) memory accesses

What happens if | take vectorization/parallelization into account?
More parameters needed: E.g., O(n3/p) on p processors

11

Asymptotic Analysis: Limitations

m O(f(n)) describes only the eventual trend of the runtime

runtime \-:
N

> size n

m Constants matter
" Not clear when “eventual” starts
= nZis likely better than 1000n2
= 10000000000n is likely worse than n?

12

© Markus Piischel ETH How to write fast numerical code
COMPULEr SCIENCE St tesertssrure o casctomssuneh Spring 2016

© Markus Piischel ETH
Computer Science =

Cost Analysis for Numerical Problems

m Goal: determine exact “cost” of an algorithm

m Cost = number of relevant operations

m Formally: define cost measure C(n). Examples:
® Counting adds and mults separately: C(n) = (adds(n), mults(n))
® Counting adds, mults, divs separately: C(n) = (adds(n), mults(n), divs(n))

= Counting all flops together: C(n) = flops(n)

m This course: focusing on floating point operations

13

Example

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = ©; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

m Asymptotic runtime?
[] o(ns)

m Cost measure?
= C(n) = (fladds(n), flmults(n)) = (n3, n3)
= C(n) =flops(n) = 2n3

14

How to write fast numerical code
Spring 2016

Cost Analysis: How To Do

m Define suitable cost measure

= Count in algorithm or code

= Recursive function: solve recurrence
m Instrument code

m Use performance counters (maybe in a later lecture)
" |ntel PCM
" |ntel Vtune
= Perfmon (open source)

= Counters for floating points are recently less and less available

Remember: Even Exact Cost # Runtime

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Performance [Gflop/s]
50

45
40 —
35
30
25
20

2n3 flops

Q 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

matrix size

16

© Markus Piischel ETH How to write fast numerical code

idgenassische Technische Hochschule Zurich

Computer SCIeNCe s raersimssiute of tecrnology zurich Spring 2016

http://software.intel.com/en-us/node/326559?page=1
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://perfmon2.sourceforge.net/

Why Cost Analysis?

= Enables performance analysis:

cost
performance = e [flops/cycle] or [flops/sec]

= Upper bound through machine’s peak performance

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

berformance [Gflop/s

® Peak performance
a0 of this computer
35
30
25
20
15
K 90 % of peak performance
¢ f' 1 D.DG 2,0‘00 3,000 4.000 5.000 6,000 7.000 8,000 9,00
17

/* Matrix-vector multiplication y = Ax +y */
void mmm(double *A, double *x, double *y, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; j++)
y[i] += A[i*n + jI*x[]];

m Flops? For n =10?
= 2n2,200

m Performance for n = 10 if runs in 400 cycles
= 0.5 flops/cycle

m Assume peak performance: 2 flops/cycle
percentage peak?
" 25%

18

© Markus Piischel ETH

How to write fast numerical code
COMPULEr SCIENCE St tesertssrure o casctomssuneh Spring 2016

Summary

= Asymptotic runtime gives only an idea of the runtime trend

m Exact number of operations (cost):
= Also no good indicator of runtime
= But enables performance analysis

m Always measure performance (if possible)
" Gives idea of efficiency
" Gives percentage of peak

19

© Markus Piischel ETH How to write fast numerical code
Computer S(_‘Ience i\dr;:n:ﬂw:hrv‘rrrw:hr'H::Mﬂ:hu\r.lumn

s Fedaral msete of technolony Zunch Spring 2016

