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Technicalities

m Research project: Let us know (fastcode@lists.inf.ethz.ch)
= if you know with whom you will work

= if you have already a project idea
" current status: on the web
= Deadline: March 7th

m If you need partner: fastcode-forum@lists.inf.ethz.ch

m If you need partner and project: fastcode-forum@lists.inf.ethz.ch
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Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
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m Compiler doesn’t do the job
m Doing by hand: nightmare
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Algorithms

Software

Compilers

Microarchitecture

performance

Performance is different than other software quality features
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Today

= Problem and Algorithm
=  Asymptotic analysis

m Cost analysis

m Standard book: Introduction to Algorithms (2"¢ edition), Corman,
Leiserson, Rivest, Stein, McGraw Hill 2001)

Problem

m Problem: Specification of the relationship between a given input and
a desired output

m Numerical problem (this course): In- and output are numbers
(or lists, vectors, arrays, ... of numbers)

m Examples

= Compute the discrete Fourier transform of a given vector x of length n
®  Matrix-matrix multiplication (MMM)

= Compress an n x n image with a ratio ...

= Sort a given list of integers

= Multiply by 5, y = 5%, using only additions and shifts
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Algorithm

m Algorithm: A precise description of a sequence of steps to solve a
given problem

m Numerical algorithm: Dominated by arithmetic (adds, mults, ...)

= Examples:
" Cooley-Tukey fast Fourier transform (FFT)
= A description of MMM by definition
" JPEG encoding
" Mergesort
B oy=Xx<<2+X

Reminder: Do You Know The O?
m O(f(n))isa..? set
m How are these related? O(f(n) = Q(f(n)) N O(f(n))
= Of(f(n))
= O(f(n))
= Q((f(n))
m O(2")=0(3")? no
m  O(log,(n)) = O(logs(n)) yes
m O(nZ+m)=0(n?)? no
© Markus Piischel ETH How to write fast numerical code

Computer Science %

Spring 2016



© Markus Piischel ETH
Computer Science

Always Use Canonical Expressions

m Example:
® not O(2n + log(n)), but O(n)

m Canonical? If not replace:

= 0(100) 0(1)

" O(log,(n)) O(log(n))
= O(n*!+nlog(n)) O(nt1)
= 2n + O(log(n)) yes

= O(2n) + log(n) O(n)

= Q(n log(m) + m log(n)) yes

Asymptotic Analysis of Algorithms & Problems

m Analysis of algorithms for
" Runtime
= Space = memory requirement = memory footprint
= Data movement (e.g., between cache and memory)

m Asymptotic runtime of an algorithm:

= Count “elementary” steps
numerical algorithms: usually floating point operations

= State result in O-notation
" Example MMM (square and rectangular): C= A*B + C

= Runtime complexity of a problem =
Minimum of the runtimes of all possible algorithms
® Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm
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Valid?

m s asymptotic analysis still valid given this?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
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All algorithms are O(n®) when counting flops.

What happens to asymptotics if | take memory accesses into account?
No problem: O(f(n)) flops means at most O(f(n)) memory accesses

What happens if | take vectorization/parallelization into account?
More parameters needed: E.g., O(n3/p) on p processors
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Asymptotic Analysis: Limitations

m  O(f(n)) describes only the eventual trend of the runtime

runtime \-:
N

> size n

m Constants matter
" Not clear when “eventual” starts
= nZis likely better than 1000n2
= 10000000000n is likely worse than n?
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Cost Analysis for Numerical Problems

m Goal: determine exact “cost” of an algorithm

m Cost = number of relevant operations

m Formally: define cost measure C(n). Examples:
®  Counting adds and mults separately: C(n) = (adds(n), mults(n))
® Counting adds, mults, divs separately: C(n) = (adds(n), mults(n), divs(n))

= Counting all flops together: C(n) = flops(n)

m This course: focusing on floating point operations
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Example

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = ©; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

m  Asymptotic runtime?
[ ] o(ns)

m Cost measure?
= C(n) = (fladds(n), flmults(n)) = (n3, n3)
= C(n) =flops(n) = 2n3
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Cost Analysis: How To Do

m Define suitable cost measure

= Count in algorithm or code

= Recursive function: solve recurrence
m Instrument code

m Use performance counters (maybe in a later lecture)
" |ntel PCM
" |ntel Vtune
= Perfmon (open source)

= Counters for floating points are recently less and less available

Remember: Even Exact Cost # Runtime

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
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http://software.intel.com/en-us/node/326559?page=1
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://perfmon2.sourceforge.net/

Why Cost Analysis?

= Enables performance analysis:

cost
performance = e [flops/cycle] or [flops/sec]

= Upper bound through machine’s peak performance

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
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/* Matrix-vector multiplication y = Ax +y */
void mmm(double *A, double *x, double *y, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; j++)
y[i] += A[i*n + jI*x[]];

m Flops? For n =10?
= 2n2,200

m Performance for n = 10 if runs in 400 cycles
= 0.5 flops/cycle

m Assume peak performance: 2 flops/cycle
percentage peak?
" 25%
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Summary

= Asymptotic runtime gives only an idea of the runtime trend

m Exact number of operations (cost):
=  Also no good indicator of runtime
= But enables performance analysis

m Always measure performance (if possible)
" Gives idea of efficiency
" Gives percentage of peak

19
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