
263-2300-00: How To Write Fast Numerical Code
Assignment 4: 70 points

Due Date: Thu, May 12th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=2125.
Before submission, you must enroll in the Moodle course.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s or Gagandeep’s office. Late homeworks have to be submitted electronically by email to the fastcode
mailing list.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. (40 pts) Multiplication of Complex Vectors
Implement a pointwise multiplication of two complex vectors (c0, . . . , cn1) of length n by a second
complex vector of the same length. Each array of complex numbers is represented as an array of twice
the length containing floats. This array contains alternating the real and imaginary parts:

(Re(c0), Im(c0), . . . , Re(cn1), Im(cn1))

This format is called interleavedcomplex format. Assume that the code will run on 3 different CPUs:

• Intel Core2 Duo CPU, with SSE 4.2 support

• Intel Core i7 CPU, with AVX support

• Intel Core i7 CPU, with AVX 2.0 support and FMA.

Code skeleton is available here. Modify the code skeleton such that you provide 3 different versions for
point-wise multiplication, using SSE, AVX, and FMA instructions. The skeleton provides validation
infrastructure, with 3 test groups and requires binary compatibility between the base SISD version and
your SIMD solution (i.e. floats are compared bit-wise for equality). Your tasks:

(a) Try to validate your results and submit pointwise SSE.c, pointwise AVX.c and pointwise FMA.c.

(b) Can you validate pointwise FMA.c for ’Test Group 3’? Why is that?

(c) Report your results, and the obtained speed up.

(d) Why is ’Test Group 3’ slower for both SIMD and SISD versions? How can you avoid that?

263-2300-00 SS16 / Assignment 4
Instructor: Markus Püschel

Pg 1 of 2 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=2125
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw04files/pointwise.zip


Note that the skeleton is written such that it compiles to machines that do not support AVX/FMA.
If you do not have a machine that supports AVX or FMA, use the ISG public student labs, or the
login server optimus7.inf.ethz.ch. If the CPU that you use, has FMA or AVX support, but the
feature bits are not automatically detected, you can force the use of SSE, AVX or FMA by adding
extra argument on the console:

./bin/pointwise 1 # (for SSE)

./bin/pointwise 2 # (for AVX)

./bin/pointwise 3 # (for FMA)

Solution:

(a) One possible solution of the pointwise multiplication can be found here.

(b) pointwise FMA.c for ’Test Group 3’ can not be validated. This is because ’Test Group 3’ deals
with special kind of floats, called denormals (or subnormals in IEEE 754-2008). The representation
of denormals results in an exponent that is below the minimum exponent, and as such they have
mantisa which is prefixed with leading zeros. On the other hand, replacing one multiply instruction
and one add instruction with a single FMA instruction changes associativity. Since FMA in general
receives one rounding instead of two roundings in the use of the combined instructions, FMA
yields more accurate results. This accuraccy particularly affects the mantisa, and thus binary
compatibility can not be achieved on denormals.

(c) Results on an Intel(R) Xeon(R) CPU E3-1285L v3 @ 3.10GHz are available here.

(d) ’Test Group 3’ is slower for both SIMD and SISD because denormals require special treatment in
hardware. On modern processors handling an operation on denormals can cost up to 100 cycles. To
avoid this, Intel provides special flags in their CPUs, called denormals-are-zero (DAZ) and flush-
to-zero (FTZ) flags. Those modes can be enabled by setting the control register using mm setcsr

instrinsics. The obtained results above, enable those flags in the initialization segment of the code.

2. (25 pts) MVM
Implement a vectorized version of an n x n matrix vector multiplication. Use AVX only and assume
that the matrix and vector contain real numbers, represented as single precision floats. Modify the
skeleton available here and submit only mvm.c. This exercise is only about vectorization (i.e., not about
blocking for cache etc.) which should be reasonably efficient.

Solution:
The Solution code for MVM can be found here.

263-2300-00 SS16 / Assignment 4
Instructor: Markus Püschel

Pg 2 of 2 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw04files/pointwise-refsol.zip
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw04files/pointwise-results.txt
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw04files/mvm.zip
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw04files/mvm-refsol.zip

