
263-2300-00: How To Write Fast Numerical Code
Assignment 3: 100 points

Due Date: Mon, April 11th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=2125.
Before submission, you must enroll in the Moodle course.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s or Gagandeep’s office. Late homeworks have to be submitted electronically by email to the fastcode
mailing list.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. (25 pts) Cache Simulator
For this exercise, we consider the trace driven cache simulator Dinero IV, and the skeleton code available
here. To run the simulator, we need to compile Dinero IV first. Windows users can only use Cygwin
to run the code, since the software cache simulator is based on GNU dependencies and build tools.

To compile the cache simulator run:

cd d4

./ configure

make

... d4/dineroIV is built

To run the cache simulator, execute:

cd ..

make # make the executable

make trace # create a memory trace

make simulation # simulate a memory trace

Let’s assume one cache of size 32KB, 8-way associative, with 64B of block size, and LRU replacement.
Given a a baseline matrix transposition algorithm, do the following:

(a) Modify the loop structure of the transpose function in main.c to reduce the number of cache
misses for the given size 4096×4096. For this use optimization ideas learned in class and consider
variants. Do not use unrolling or scalar replacement. Do not modify trace.c nor mat.c files,
and use mat get and mat set to read / write to the matrices (those two routines will generate
the memory trace used for Dinero IV).

(b) Test your algorithm for square matrices of size n × n, where n = 2k and k ∈ {8, 9, . . . , 12}, and
report the results.

Solution: The initial run of the code with DineroIV shows us that we have a 0.125 miss ratio for
reads, when reading matrix m1, but also miss ratio of 1 when writing to m2. Therefore, we need to
block the matrix transposition, such that we improve the miss ratio for write accesses. The simplest
form of blocking would be modifying the 2-fold loop code into a 4-fold loop code:

263-2300-00 SS16 / Assignment 3
Instructor: Markus Püschel

Pg 1 of 7 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=2125
http://pages.cs.wisc.edu/~markhill/DineroIV/
https://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw03files/cache.zip
https://www.cygwin.com/

int b = 8;

for (int i = 0; i < m; i += b)

for (int j = 0; j < n; j += b)

for (int k = i; k < i + b; ++k)

for (int l = j; l < j + b; ++l)

mat_set(m2, l, k, mat_get(m1, k, l));

The code above allows us to change the size of the block and test different versions. Figure 1 clearly
shows that block of size 8 is the best strategy for the given cache parameters.

0.0

0.2

0.4

0.6

256 512 1024 2048 4096
Matrix Size

No Blocking Block 2 Block 4 Block 8 Block 16

DineroIV: 32KB, 8-way associative, with 64B of block size

Miss Ratio

Figure 1: Miss ratio for both read and write accesses for different block sizes

The blocking will significantly reduce the miss ratio of the write accesses as shown in Table 1. Ideally,
with the prefect block size, we would expect that read miss ratio will be identical to the write miss ratio,
but this is not the case, due to conflict misses. The number of conflict misses will be OS dependent,
due to different implementation of the malloc function, used internally by mat alloc.

Size No blocking Block 2 Block 4 Block 8 Block 16

256 0.125 / 1.0 0.125 / 0.5 0.1250 / 0.25 0.125 / 0.1250 0.125 / 0.1646
512 0.125 / 1.0 0.125 / 0.5 0.1265 / 0.25 0.125 / 0.1387 0.125 / 1.0000
1024 0.125 / 1.0 0.125 / 0.5 0.1265 / 0.25 0.125 / 0.1387 0.125 / 1.0000
2048 0.125 / 1.0 0.125 / 0.5 0.1265 / 0.25 0.125 / 0.1387 0.125 / 1.0000
4096 0.125 / 1.0 0.125 / 0.5 0.1265 / 0.25 0.125 / 0.1387 0.125 / 1.0000

Table 1: Miss ratio for reads / writes for different block sizes (Mac OS X Yosemite 10.10.5)

While the analysis so far will get you the full points, for the enthusiasts, we have to note that the miss
ratio can be decreased even further. One way to do this is by using a temporary storage, where we
first copy the block that we read, and then we write it to the output matrix. An implementation of
this variant is available here. Results are depicted on Table 2.

Size 256 512 1024 2048 4096

R/W Miss Ratio 0.0625 / 0.0626 0.0626 / 0.0626 0.0626 / 0.0626 0.0626 / 0.0626 0.0625 / 0.0626

Table 2: Blocking with size 8 and temporary storage for transposition (Mac OS X Yosemite 10.10.5)

Note that this implementation will only improve the miss ratio, while decrease performance, since it
doubles the number of reads and writes. A more realistic scenario would be blocking for registers, loop
unrolling etc, which we omit for simplicity.

263-2300-00 SS16 / Assignment 3
Instructor: Markus Püschel

Pg 2 of 7 Computer Science
ETH Zurich

https://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw03files/cache-refsol.c

2. Cache mechanics (25 pts)
Consider a direct mapped cache of size 16KB with a block size of 16 bytes. The cache is write-back
and write-allocate. Remember that sizeof(float) == 4. Assume that the cache starts empty and
that local variables and computations take place completely within the registers and do not spill onto
the stack.

Show in each case some detail so we see how you got the result.

(a) Consider the supposedly cache-unfriendly matrix computation below. Assume that the mat matrix
starts at address 0 (min computes minimum of two floats).

void hostile_to_cache(float ** mat , int v, int n) {

for (int k = 0; k < n; k++)

for (int i = 0; i < n; i++)

mat[i][v] = min(mat[i][v], mat[i][k] + mat[k][v]);

}

i. What is the cache miss rate if n = 64?

ii. What is the cache miss rate if n = 128?

(b) Next consider the supposedly cache-friendly implementation of the same computation. Assume
that tmp array is of size n and starts just after mat.

void cache_friendly(float ** mat , float * tmp , int v, int n) {

for (int i = 0; i < n; i++){

tmp[i] = mat[i][v];

}

for (int k = 0; k < n; k++)

for (int i = 0; i < n; i++)

tmp[i] = min(tmp[i], mat[i][k] + mat[k][v]);

for (int i = 0; i < n; i++){

mat[i][v] = tmp[i];

}

}

i. What is the cache miss rate if n = 64?

ii. What is the cache miss rate if n = 128?

(c) Does the cache-friendly code result in fewer cache misses?

Solution:

(a) mat is accessed 4n2 times.

i. mat fits in cache, only compulsory misses, thus miss rate = 1024
4∗64∗64 = 6.25%.

ii. mat does not fit in cache, the entries are accessed column-wise as mat [i][v] and mat [i][k]
inside the inner i-loop. If mat [i][v] and mat [i][k] lie on the same cache line then there is
only one cache miss (which happens for 4 iterations of outer k-loop and can be ignored),
otherwise there are two cache miss for each column-wise access. The column-wise access
mat [k][v] also results in relatively smaller number of cache misses so it can be ignored.
Thus the cache miss rate ≈ 2∗128∗128

4∗128∗128 = 50%.

(b) mat and tmp are both accessed 2n2 + 2n times.

i. For the first loop, there are 80 compulsory misses. For the second loop, there are 960
compulsory misses for loading tmp, plus there are conflict misses whenever tmp[i] maps
to the same cache line as mat [i][k] (ignoring single conflict with mat [k][v]). The number
of times tmp conflicts with mat [i][k] is 64. Each conflicts result in two misses, thus total
number of cache misses in double loop are 1088. The cache misses for the third loop are
small and can be ignored. Thus cache miss rate ≈ 1168

4∗64∗64+4∗64 = 7.1%.

ii. For the second loop, each access to mat [i][k] results in a cache miss. There are also cache
misses due to entries in tmp and mat mapping to the same cache line, which being small
can be neglected. The cache misses for the first and third loop can also be neglected.
Thus, cache miss rate ≈ 128∗128

4∗128∗128+4∗128 ≈ 25%.

263-2300-00 SS16 / Assignment 3
Instructor: Markus Püschel

Pg 3 of 7 Computer Science
ETH Zurich

(c) When the matrix tmp does not fit into cache, the cache-friendly reduces miss rate.

3. (20 pts) Cache Mechanics
In this problem, you will compare the performance of direct mapped and 4-way associative caches for
the initialization of 2-dimensional arrays of data structures. Both caches have a size of 1024 bytes.
The direct mapped cache has 64-byte blocks while the 4-way associative cache has 32-byte blocks.

Show in each question some detail so we see how you got the result.

You are given the following definition of a coffee particle:

typedef struct{

int color [3];

float position [3];

int aroma;

int taste;

} particle_t;

particle_t coffee [16][16];

register int i, j, k;

Also assume that

• sizeof(int) = 4 and sizeof(float) = 4

• coffee begins at memory address 0

• Both caches are initially empty

• The array is stored in row-major order

• Variables i, j, k are stored in registers and any access to these variables does not cause a cache
miss.

(a) for (i = 0; i < 16; i ++) {

for (j = 0; j < 16; j ++) {

for(k = 0; k < 3; k ++) {

coffee[i][j].color[k] = 0;

}

for(k = 0; k < 3; k ++) {

coffee[i][j]. position[k] = 0.0;

}

coffee[i][j].aroma = 0;

coffee[i][j].taste = 0;

}

}

i. What fraction of the writes in the above code will result in a miss in the direct mapped cache?

ii. What fraction of the writes will result in a miss in the 4-way associative cache?

(b) for (i = 0; i < 16; i ++) {

for (j = 0; j < 16; j ++) {

for (k = 0; k < 3; k ++) {

coffee[j][i].color[k] = 0;

coffee[j][i]. position[k] = 0.0;

}

coffee[j][i].aroma = 0;

coffee[j][i].taste = 0;

}

}

i. What fraction of the writes in the above code will result in a miss in the direct mapped cache?

ii. What fraction of the writes will result in a miss in the 4-way associative cache?

(c) for (i = 0; i < 16; i ++) {

for (j = 0; j < 16; j ++) {

for (k = 0; k < 3; k ++) {

coffee[i][j].color[k] = 0;

263-2300-00 SS16 / Assignment 3
Instructor: Markus Püschel

Pg 4 of 7 Computer Science
ETH Zurich

coffee[i][j]. position[k] = 0.0;

}

coffee[i][j].aroma = 0;

coffee[i][j].taste = 0;

}

}

i. What fraction of the writes in the above code will result in a miss in the direct mapped cache?

ii. What fraction of the writes will result in a miss in the 4-way associative cache?

Solution:

(a) There are 8 writes for each iteration of j-loop. Each cache line in direct mapped can hold two
particle t objects whereas an associative cache line can hold one such object.

i. There are cache misses for every alternate particle t object. Thus, fraction of write that
are misses = 0.0625.

ii. There are cache misses for writing every particle t object. Thus, fraction of write that
are misses = 0.125.

(b) i. The coffee array is accessed column-wise which results in cache miss every time an array
entry is written. Thus, fraction of write that are misses = 0.125.

ii. There are cache misses for writing every particle t object. Thus, fraction of write that
are misses = 0.125.

(c) Same as part (a).

4. (25 pts) Roofline
Consider a processor with the following hardware parameters:

• Can issue two scalar floating point additions and one scalar floating point multiplication per cycle.

• Memory bandwidth is 26 GB/s.

• One cache with 64-byte cache block size.

• CPU frequency is 3.25 GHz.

(a) Draw a roofline plot for double precision floating point operations on the given hardware. The
units for x-axis and y-axis are flops/byte and flops/cycle, respectively.

(b) Consider the execution of the following three kernels on the platform above (vector x has size N
and vector y has size N + 1). Assume a cold cache scenario and a vector size N such that both
vectors fit whithin the cache once they are loaded from memory. Both vectors are cache-aligned
(first element goes into first cache block).

void kernel1 (double *x, double *y, size_t N) {

int i;

for (i = 0; i < N; ++i)

x[i] += 1.7 * y[i] + y[i+1];

}

void kernel2 (double *x, double *y, size_t N) {

int i;

for (i = 0; i < N; ++i)

x[i] += 1.7 + y[i] + y[i+1];

}

void kernel3 (double *x, double *y, size_t N) {

int i;

for (i = 0; i < N; ++i)

x[i] *= 1.7 * y[i] * y[i+1];

}

For each of the kernels,

263-2300-00 SS16 / Assignment 3
Instructor: Markus Püschel

Pg 5 of 7 Computer Science
ETH Zurich

i. Derive the operational intensity (counting reads and writes) and locate it in your roofline
plot.

ii. Take the instruction mix into account to derive a (now kernel-specific) tighter bound for peak
performance. Include these in the roofline plot and label by kernel number.

iii. Is it is possible to reach the peak performance from ii. ? If not, include the tighter performance
bound in your roofline plot and label it.

(c) For each of the three kernels, consider the following modification in the memory access pattern
(strided access). We only show kernel1, but assume the same modification in kernel2 and
kernel3. The vectors have an according larger size.

void kernel1 (double *x, double *y, size_t N) {

int i;

for (i = 0; i < N; ++i)

x[i] += 1.7 * y[8*i] + y[8*i+2];

}

Answer all the questions in part (b) for the modified kernels using a new roofline plot for read-
ability.

Solution

0.01 0.1 1 10
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

0.375

3
Peak � (3 f/c)

ß (
8 B

/c)

Figure 2: Roofline plot for part 4a

(a) The given CPU performs two additions and one multiplication per cycle, hence peak performance
is π = 3 flops/cycle. With respect to memory bandwidth, it can transfer 26 Gbytes/sec and has
a frequency of 3.25 GHz, thus peak bandwidth is β = 26× 109/(3.25× 109) = 8 bytes/cycle. The
ridge point of the roofline plot is at 0.375 flops/byte. See Figure 2.

(b) kernel1

i The function loads vector x[N] and y[N+1] only once. The access patterns of x and y exhibit
spatial locality since all elements are loaded in one cache line and are always used. Assuming
that the vectors are cache-block aligned, approximately1 2N doubles are loaded from memory,
while N doubles are written to memory. A total of 3N flops are performed. Therefore, the
operational intensity is:

I ≈ 3N/(16 + 8)N = 0.125 flops/byte.

ii kernel1 has perfect balance of additions and multiplications for the given platform, 2:1
(adds:mults). Thus, the peak performance of the platform is a tight bound for the peak
performance of the kernel.

1this is approximate because depending on the relation between N and the cache block size, and due to the fact that y has
an extra element, one or two of the cache blocks loaded won’t be fully utilized. Both solutions, approximate and exact under
certain assumptions, will be considered correct

263-2300-00 SS16 / Assignment 3
Instructor: Markus Püschel

Pg 6 of 7 Computer Science
ETH Zurich

0.01 0.1 1 10
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

Peak � (3 f/c)

ß (
8 B

/c)

2

3

Figure 3: Roofline plot for part 4b

iii The kernel, however, does not reach peak performance because it is memory bound.

kernel2

i The operational intensity is the same as kernel1 because the only difference is the instruction
mix, the instruction count remains the same.

ii The maximum performance is 2 flops/cycle, due to the instruction mix (additions only).

iii This kernel does not reach the peak performance either.

kernel3:

i Again, the operational intensity is the same as for the previous kernels.

ii The maximum performance is 1 flop/cycle (multiplications only)

iii This kernel reaches the tight peak performance bound of 1 flop/cycle.

0.01 0.1 1 10
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

0.0375

Peak � (3 f/c)

ß (
8 B

/c)

kernel 2

kernel 3

kernel 1

2

3

Figure 4: Roofline plot for part 4c

(c) In this case, y is accessed as a stride. As a result, only two elements are used for every cache
block loaded from y. Thus, in order to use N + 1 elements, approximately 8N elements have to
be loaded from memory. This results in a lower operational intensity for all the three kernels:

I ≈ 3N/(16 + 8× 8)N = 0.0375 flops/byte.

y[0] y[2] y[8] y[10]

Iteration 0 Iteration 1

As depicted in Figure 4, the hardened performance bounds are equivalent to part 4b. None of the
kernels, however, will reach its corresponding peak performance bound.

263-2300-00 SS16 / Assignment 3
Instructor: Markus Püschel

Pg 7 of 7 Computer Science
ETH Zurich

