
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How to Write Fast Numerical Code
Spring 2015
Lecture: Autotuning and Machine Learning

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Overview

 Rough classification of autotuning efforts seen in course

 Use of machine learning I

 Use of machine learning II

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

search used

no search used

PhiPac/ATLAS: MMM Generator
Whaley, Bilmes, Demmel, Dongarra, …

Blocking improves locality

a b

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=B)

 for (j = 0; j < n; j+=B)

 for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */

 for (i1 = i; i1 < i+B; i++)

 for (j1 = j; j1 < j+B; j++)

 for (k1 = k; k1 < k+B; k++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

PhiPac/ATLAS: MMM Generator

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

source: Pingali, Yotov, Cornell U.

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

ATLAS
MMM generator

search used

no search used

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

FFTW: Discrete Fourier Transform (DFT)
Frigo, Johnson

Installation

 configure/make

Usage

 d = dft(n)

 d(x,y)

Twiddles

Search for fastest
computation strategy

n = 1024

16 64

8 8

radix 16

radix 8
base case

base case base case

FFTW: Codelet Generator
Frigo

DFT codelet generator

n

dft_n(*x, *y, …)

fixed size DFT functions
straightline code

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

FFTW codelet
generator

ATLAS
MMM generator

FFTW adaptive
library

search used

no search used

OSKI: Sparse Matrix-Vector Multiplication
Vuduc, Im, Yelick, Demmel

 Blocking for registers:

 Improves locality (reuse of input vector)

 But creates overhead (zeros in block)

* =

* =

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

OSKI: Sparse Matrix-Vector Multiplication

Gain by blocking (dense MVM) Overhead by blocking

* =

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

FFTW codelet
generator

ATLAS
MMM generator

FFTW adaptive
library

search used

no search used

OSKI
sparse MVM

OSKI
sparse MVM

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Program Generation in Spiral
Transform

C Program

Algorithm
(SPL)

Algorithm
(∑-SPL)

Decomposition rules

void sub(double *y, double *x) {
double f0, f1, f2, f3, f4, f7, f8, f10, f11;
 f0 = x[0] - x[3];

f1 = x[0] + x[3];
f2 = x[1] - x[2];
f3 = x[1] + x[2];
f4 = f1 - f3;
y[0] = f1 + f3;
y[2] = 0.7071067811865476 * f4;
f7 = 0.9238795325112867 * f0;

< more lines>

+ Search or
Learning

parallelization
vectorization

locality
optimization

basic block
optimizations

Spiral: Complete Automation for Transforms

• Memory hierarchy optimization
 Rewriting and search for algorithm selection
 Rewriting for loop optimizations

• Vectorization
 Rewriting

• Parallelization
 Rewriting

• Derivation of library structure
 Rewriting
 Other methods

fixed input size code

general input size library

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

FFTW codelet
generator

ATLAS
MMM generator

FFTW adaptive
library

Spiral: transforms
fixed input size

Spiral: transforms
general input size

Spiral: transforms
general input size

Machine learning Machine learning

search used

no search used

OSKI
sparse MVM

OSKI
sparse MVM

Overview

 Rough classification of autotuning efforts seen in course

 Use of machine learning I [de Mesmay et al., IPDPS 2010]

 Use of machine learning II

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Installation

 configure/make

Use

 d = dft(n)

 d(x,y)
Twiddles

Online tuning
(time of use)

Offline tuning
(time of installation)

Goal

for a few n: search
learn decision trees

Installation

 configure/make

Use

 d = dft(n)

 d(x,y)

Twiddles

Search for fastest
computation strategy

Library Structure: Examples

DFT: scalar code

DFT: full-fledged (vectorized and parallel code)

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Library Structure: Examples

DFT: scalar code

n = 16

4 4

2 2

no base case
radix 4

no base case
radix 2

base case

base case base case

Recursive choice:

n = 2k base case?
radix?

Example selections for n = 16:

Library Structure: Examples
DFT: full-fledged (vectorized and parallel code)

n = 1024

16 64

8 8

no base case
radix 16
threading!
4 threads
twiddles on the fly
no loop exchange

no base case
radix 8
…

base case

base case base case

Recursive choice:

n = 2k

base case?
radix?
threading?
#threads?
twiddles?
loop exchange?

Example selections for n = 1024:

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Our Work

Upon installation, generate decision trees for each choice

Example:

Statistical Classification: C4.5
Features (events)

C4.5

P(play|windy=false) = 6/8

P(don’t play|windy=false) = 2/8

P(play|windy=true) = 1/2

P(don’t play|windy=false) = 1/2

H(windy=false) = 0.81

H(windy=true) = 1.0

H(windy) = 0.89

H(outlook) = 0.69
H(humidity) = …

Entropy of Features

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Application to Libraries

 Features = arguments of functions (except variable pointers)

 At installation time:

 Run search for a few input sizes n

 Yields training set: features and associated decisions
(several for each size)

 Generate decision trees using C4.5 and insert into library

dft(int n, cpx *y, cpx *x)

dft_strided(int n, int istr, cpx *y, cpx *x)

dft_scaled(int n, int str, cpx *d, cpx *y, cpx *x)

Issues

 Correctness of generated decision trees

 Issue: learning sizes n in {12, 18, 24, 48}, may find radix 6

 Solution: correction pass through decision tree

 Prime factor structure

n = 2i3j = 2, 3, 4, 6, 9, 12, 16, 18, 24, 27, 32, …

i

j

Compute i, j
and add to features

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Experimental Setup

 3GHz Intel Xeon 5160 (2 Core 2 Duos = 4 cores)

 Linux 64-bit, icc 10.1

 Libraries:

 IPP 5.3

 FFTW 3.2 alpha 2

 Spiral-generated library

Learning works as expected

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

“All” Sizes

 All sizes n ≤ 218, with prime factors ≤ 19

“All” Sizes

 All sizes n ≤ 218, with prime factors ≤ 19

 Higher order fit of all sizes

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Overview

 Rough classification of autotuning efforts seen in course

 Use of machine learning I

 Use of machine learning II [de Mesmay et al., ICML 2009]

29

Picture: http://www.sente.ch/software/goban/BoardBig.jpg

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Modeling Choice: Multi-armed Bandit

Which arm to pull next to maximize reward?

http://www.cardboardcutout.net/index.php?_a=product&product_id=115&cat_id=130

Modeling Choice: Multi-armed Bandit

choice 1

Multi-armed bandit

2 i k

reward lists: (5, 7, 1) (4) (4, 3, 12, 2, 2) ()

Which arm to pull next to maximize reward?

ni of which si are among s best

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

In Our Application

choice of next
expansion step

Multi-armed bandit

partially expanded
algorithm

Search Algorithm: TAG

DFT1024

(1200,1440,…)

multi-armed
bandit

Descend

Fully expanded algorithm

DFT1024

Evaluate

“1520 Mflop/s”

DFT1024

“1520 Mflop/s”

Backpropagate

(1200,1440,1520…)

Monte Carlo

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Experiments

 Spiral-generated adaptive libraries
(similar to FFTW 3.x)

 Intel Xeon 5160, 2 x dualcore, 3GHz

 Intel icc 10.1

 FFTW 3.2alpha, Intel IPP 5.3

Recursive choice:

n = 2k

base case?
radix?
threading?
#threads?
twiddles?
loop exchange?

~ 1 hour

~ 1 minute

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Message of Lecture

 Machine learning should be used in autotuning

 Overcomes the problem of expensive searches

 Relatively easy to do

 Applicable to any search-based approach

 Removes searches or better searches

time of
implementation

time of
installation

platform known

time of
use

problem parameters
known

Machine learning Machine learning

Research Questions

 How to automate the production of fastest numerical code?

 Domain-specific languages

 Rewriting

 Compilers

 Machine Learning

 What program language features help with program generation?

 What environment should be used to build generators?

 How to represent mathematical functionality?

 How to formalize the mapping to fast code?

 How to handle various forms of parallelism?

 How to integrate into standard work flows?

