How to Write Fast Numerical Code

Spring 2015

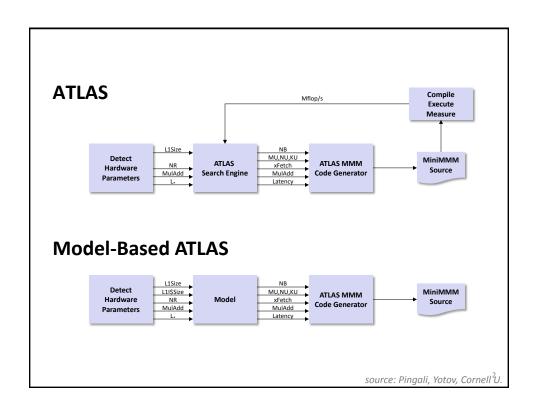
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Principles

- Optimization for memory hierarchy
 - Blocking for cache
 - Blocking for registers
- Basic block optimizations
 - Loop order for ILP
 - Unrolling + scalar replacement
 - Scheduling & software pipelining
- Optimizations for virtual memory
 - Buffering (copying spread-out data into contiguous memory)
- Autotuning
 - Search over parameters (ATLAS)
 - Model to estimate parameters (Model-based ATLAS)
- All high performance MMM libraries do some of these (but possibly in a different way)

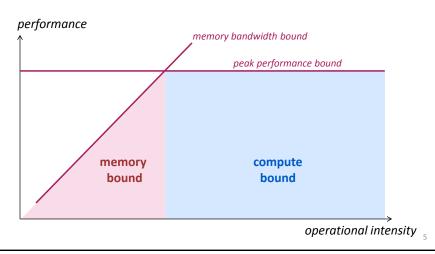
3

Today

- Memory bound computations
- Sparse linear algebra, OSKI

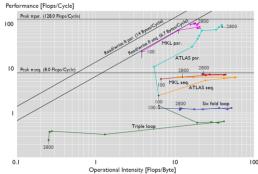
Memory Bound Computation

- Data movement, not computation, is the bottleneck
- Typically: Computations with operational intensity I(n) = O(1)



Memory Bound Or Not? Depends On ...

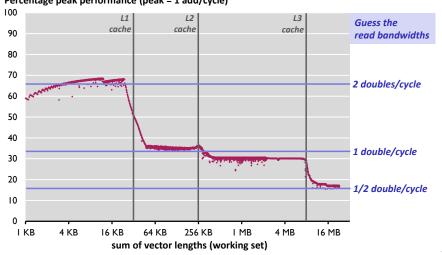
- The computer
 - Memory bandwidth
 - Peak performance
- How it is implemented
 - Good/bad locality
 - SIMD or not



- How the measurement is done
 - Cold or warm cache
 - In which cache data resides
 - See next slide

Example: BLAS 1, Warm Data & Code

z = x + y on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

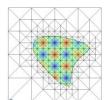


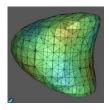
Sparse Linear Algebra

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop/OSKI
- References:
 - Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004
 - Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.;
 Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply,
 pp. 26, Supercomputing, 2002
 - Sparsity/Bebop website

Sparse Linear Algebra

- Very different characteristics from dense linear algebra (LAPACK etc.)
- Applications:
 - finite element methods
 - PDE solving
 - physical/chemical simulation (e.g., fluid dynamics)
 - linear programming
 - scheduling
 - signal processing (e.g., filters)
 - ..
- Core building block: Sparse MVM





Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/clays/ projects/unfitted-meshes_en.html

Sparse MVM (SMVM)

y = y + Ax, A sparse but known

- Typically executed many times for fixed A
- What is reused (temporal locality)?
- Upper bound on operational intensity?

Storage of Sparse Matrices

- Standard storage is obviously inefficient: Many zeros are stored
 - Unnecessary operations
 - Unnecessary data movement
 - Bad operational intensity
- Several sparse storage formats are available
- Most popular: Compressed sparse row (CSR) format
 - blackboard

11

CSR

- Assumptions:
 - A is m x n
 - K nonzero entries

- Storage:
 - K doubles + (K+m+1) ints = Θ(max(K, m))
 - Typically: Θ(K)

Sparse MVM Using CSR

y = y + Ax

CSR + sparse MVM: Advantages?

13

CSR

Advantages:

- Only nonzero values are stored
- All three arrays for A (values, col_idx, row_start) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to y

Disadvantages:

- Insertion into A is costly
- Poor temporal locality with respect to x

Impact of Matrix Sparsity on Performance

- Adressing overhead (dense MVM vs. dense MVM in CSR):
 - ~ 2x slower (example only)
- Fundamental difference between MVM and sparse MVM (SMVM):
 - Sparse MVM is input dependent (sparsity pattern of A)
 - Changing the order of computation (blocking) requires changing the data structure (CSR)

15

Bebop/Sparsity: SMVM Optimizations

- Idea: Blocking for registers
- Reason: Reuse x to reduce memory traffic
- Execution: Block SMVM y = y + Ax into micro MVMs
 - Block size r x c becomes a parameter
 - Consequence: Change A from CSR to r x c block-CSR (BCSR)
- BCSR: Blackboard

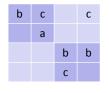
BCSR (Blocks of Size r x c)

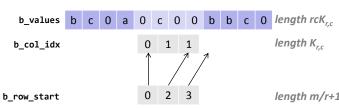
Assumptions:

- A is m x n
- Block size r x c
- K_{r,c} nonzero blocks

A as matrix (r = c = 2)

A in BCSR (r = c = 2):





Storage:

- $rcK_{r,c}$ doubles + $(K_{r,c}+m/r+1)$ ints = $\Theta(rcK_{r,c})$
- $rcK_{r,c} \ge K$

17

Sparse MVM Using 2 x 2 BCSR

```
void smvm 2x2(int bm, const int *b row start, const int *b col idx,
              const double *b_values, double *x, double *y)
 int i, j;
 double d0, d1, c0, c1;
  /* loop over bm block rows */
 for (i = 0; i < bm; i++) {
   d0 = y[2*i]; /* scalar replacement since reused */
   d1 = y[2*i+1];
    /* dense micro MVM */
   for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) {</pre>
     c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */
     c1 = x[2*b\_col\_idx[j]+1];
     d0 += b_values[0] * c0;
     d1 += b_values[2] * c0;
     d0 += b_values[1] * c1;
     d1 += b_values[3] * c1;
   y[2*i] = d0;
   y[2*i+1] = d1;
```

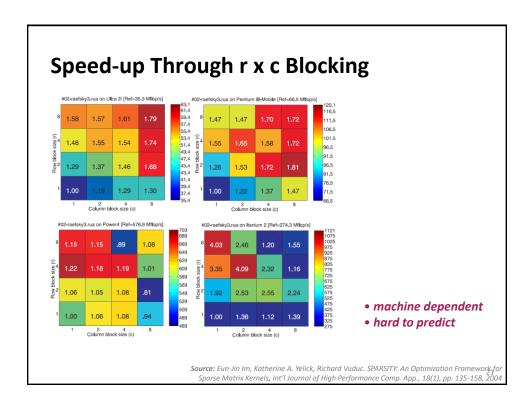
BCSR

- Advantages:
 - Temporal locality with respect to x and y
 - Reduced storage for indexes
- Disadvantages:
 - Storage for values of A increased (zeros added)
 - Computational overhead (also due to zeros)

- Main factors (since memory bound):
 - Plus: increased temporal locality on x + reduced index storage
 reduced memory traffic
 - *Minus:* more zeros = increased memory traffic

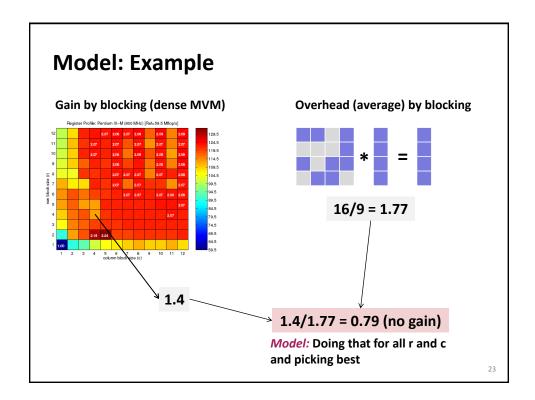
19

Which Block Size (r x c) is Optimal? Matrix 02-raetsky3 Example: 20,000 x 20,000 matrix (only part shown) Perfect 8 x 8 block structure No overhead when blocked r x c, with r, c divides 8 source: R. Vuduc, LLINL



How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)
- Solution 1: Searching over all r x c within a range, e.g., $1 \le r,c \le 12$
 - Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
 - Total cost: 1440 SMVMs
 - Too expensive
- Solution 2: Model
 - Estimate the gain through blocking
 - Estimate the loss through blocking
 - Pick best ratio



Model

- Goal: find best r x c for y = y + Ax
- Gain through r x c blocking (estimation):

$$G_{r,c} = \frac{dense\ MVM\ performance\ in\ r\ x\ c\ BCSR}{dense\ MVM\ performance\ in\ CSR}$$

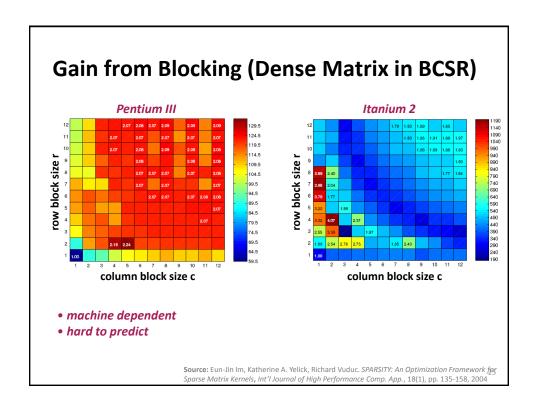
dependent on machine, independent of sparse matrix

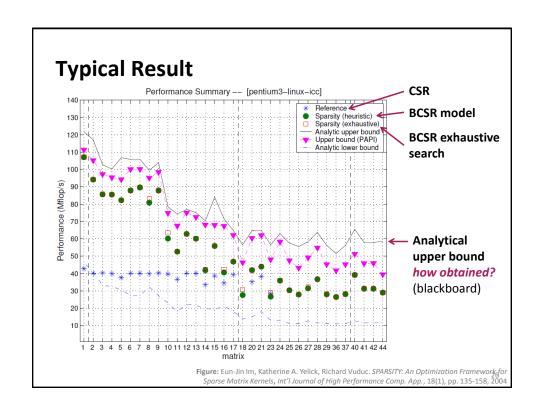
Overhead through r x c blocking (estimation) scan part of matrix A

$$O_{r,c} = \frac{number\ of\ matrix\ values\ in\ r\ x\ c\ BCSR}{number\ of\ matrix\ values\ in\ CSR}$$

independent of machine, dependent on sparse matrix

Expected gain: G_{r,c}/O_{r,c}





Principles in Bebop/Sparsity Optimization

- Optimization for memory hierarchy = increasing locality
 - Blocking for registers (micro-MVMs)
 - Requires change of data structure for A
 - Optimizations are input dependent (on sparse structure of A)
- Fast basic blocks for small sizes (micro-MVM):
 - Unrolling + scalar replacement
- Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)
 - Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

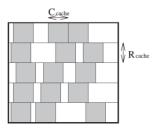
27

SMVM: Other Ideas

- Cache blocking
- Value compression
- Index compression
- Pattern-based compression
- Special scenario: Multiple inputs

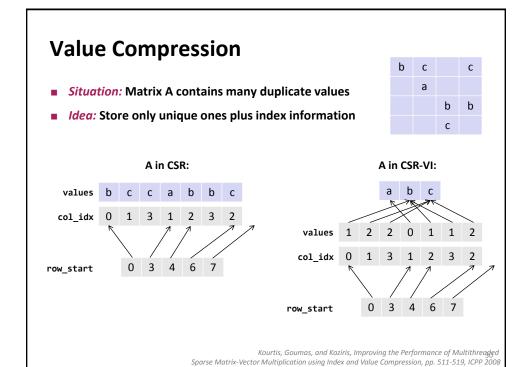
Cache Blocking

Idea: divide sparse matrix into blocks of sparse matrices



- Experiments:
 - Requires very large matrices (x and y do not fit into cache)
 - Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

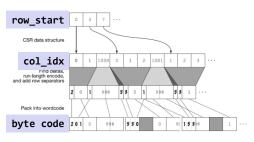
Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004



Index Compression

- Situation: Matrix A contains sequences of nonzero entries
- Idea: Use special byte code to jointly compress col_idx and row_start

Coding



Decoding

0: acc = acc * 256 + arg; 1: col = col + acc * 256 + arg; acc = 0; emit.element(row, col); col = col + 1; 2: col = col + acc * 256 + arg; acc = 0; emit.element(row, col + 1); col = col + 2; 3: col = col + acc * 256 + arg; acc = 0; emit.element(row, col + 1); emit.element(row, col + 1); emit.element(row, col + 2); col = col + 3; 4: col = col + acc * 256 + arg; acc = 0; emit.element(row, col); emit.element(row, col); emit.element(row, col + 2); emit.element(row, col + 2); emit.element(row, col + 3); col = col + 4; 5: row = row + 1; col = 0;

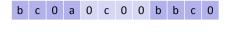
Willcock and Lumsdaine, Accelerating Sparse Matrix Computations via Data Compression, pp. 307-316, ICS 2006

Pattern-Based Compression

- Situation: After blocking A, many blocks have the same nonzero pattern
- Idea: Use special BCSR format to avoid storing zeros;
 needs specialized micro-MVM kernel for each pattern

A as matrix

Values in 2 x 2 BCSR



Values in 2 x 2 PBR

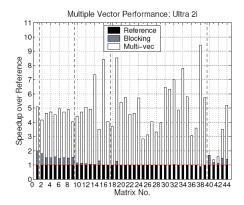
b c a c b b c

+ bit string: 1101 0100 1110

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2005

Special scenario: Multiple inputs

- Situation: Compute SMVM y = y + Ax for several independent x
- Blackboard
- Experiments: up to 9x speedup for 9 vectors



Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004