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Today 

 Linear algebra software: history, LAPACK and BLAS 

 Blocking (BLAS 3): key to performance 

 How to make MMM fast: ATLAS, model-based ATLAS 
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Linear Algebra Algorithms: Examples 

 Solving systems of linear equations 

 Eigenvalue problems 

 Singular value decomposition 

 LU/Cholesky/QR/… decompositions 

 … and many others 

 

 

 Make up most of the numerical computation across disciplines 
(sciences, computer science, engineering) 

 Efficient software is extremely relevant 
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The Path to LAPACK 

 EISPACK and LINPACK (early 70s) 
 Libraries for linear algebra algorithms  

 Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart 

 LINPACK still the name of the benchmark for the TOP500 (Wiki) list of 
most powerful supercomputers 

 Problem:  
 Implementation vector-based = low operational intensity 

(e.g., MMM as double loop over scalar products of vectors) 

 Low performance on computers with deep memory hierarchy (in the 80s) 

 Solution: LAPACK 
 Reimplement the algorithms “block-based,” i.e., with locality 

 Developed late 1980s, early 1990s 

 Jim Demmel, Jack Dongarra et al. 
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http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500
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Matlab 

 Invented in the late 70s by Cleve Moler 

 Commercialized (MathWorks) in 84 

 Motivation: Make LINPACK, EISPACK easy to use 

 Matlab uses LAPACK and other libraries but can only call it if you 
operate with matrices and vectors and do not write your own loops 

 A*B (calls MMM routine) 

 A\b (calls linear system solver) 
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LAPACK and BLAS 

 Basic Idea: 

 

 

 

 Basic Linear Algebra Subroutines (BLAS, list) 

 BLAS 1: vector-vector operations (e.g., vector sum) 

 BLAS 2: matrix-vector operations (e.g., matrix-vector product) 

 BLAS 3: matrix-matrix operations (e.g., MMM) 

 LAPACK implemented on top of BLAS 

 Using BLAS 3 as much as possible 

LAPACK 

BLAS 

static higher level functions 

reimplemented kernels 
for each platform 

I(n) =

O(1)

O(1)

O(
p
C)

cache 
size 
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http://www.netlib.org/blas/blasqr.pdf
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Why is BLAS3 so important? 

 Using BLAS 3 (instead of BLAS 1 or 2) in LAPACK 
= blocking  
= high operational intensity I  
= high performance 

 Remember (blocking MMM): 

 

* = 

* = 

I(n) =

O(1)

O(
p
C)
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Today 

 Linear algebra software: history, LAPACK and BLAS 

 Blocking (BLAS 3): key to performance 

 How to make MMM fast: ATLAS, model-based ATLAS 
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MMM: Complexity? 

 Usually computed as C = AB + C 

 Cost as computed before 

 n3 multiplications + n3 additions = 2n3 floating point operations 

 = O(n3) runtime 

 Blocking 

 Increases locality (see previous example) 

 Does not decrease cost 

 Can we reduce the op count? 
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Strassen’s Algorithm 

 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische 
Mathematik 13, 354-356, 1969 
Until then, MMM was thought to be Θ(n3) 

 Recurrence: T(n) = 7T(n/2) + O(n2) = O(nlog
2

(7)) ≈ O(n2.808) 

 Fewer ops from n=654, but … 

 Structure more complex → performance crossover much later 

 Numerical stability inferior 

 

 Can we reduce more? 
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crossover: 654 
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MMM Complexity: What is known 

 Coppersmith, D. and Winograd, S.: "Matrix Multiplication via 
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990 

 MMM is O(n2.376) 

 

 MMM is obviously Ω(n2) 

 It could well be close to Θ(n2) 

 Practically all code out there uses 2n3 flops 

 

 Compare this to matrix-vector multiplication:  
 Known to be Θ(n2) (Winograd), i.e., boring 

11 

MMM: Memory Hierarchy Optimization 

 Huge performance difference for large sizes 

 Great case study to learn memory hierarchy optimization 
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matrix size 

MMM (square real double) Core 2 Duo 3Ghz 

triple loop 

ATLAS generated 

theoretical scalar peak 
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ATLAS 

 BLAS program generator and library (web, successor of PhiPAC) 

 Idea: automatic porting 

 

 

 

 People can also contribute handwritten code 

 The generator uses empirical search over implementation 
alternatives to find the fastest implementation 
no vectorization or parallelization: so not really used anymore 

 We focus on BLAS 3 MMM 

 Search only over cost 2n3 algorithms  
(cost equal to triple loop) 

LAPACK 

BLAS 

static 

regenerated 
for each platform 
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ATLAS Architecture 

Detect 
Hardware 

Parameters 

ATLAS Search 
Engine 

(MMSearch) 

NR 
MulAdd 

L* 

L1Size 
ATLAS MM 

Code Generator 
(MMCase) 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

Compile, 
Execute, 
Measure 

MFLOPS 

Hardware parameters: 
• L1Size: size of L1 data cache 
• NR: number of registers 
• MulAdd: fused multiply-add available? 
• L* : latency of FP multiplication 

Search parameters: 
• for example blocking sizes 
• span search space 
• specify code 
• found by orthogonal line search 

source: Pingali, Yotov, Cornell U. 14 

http://math-atlas.sourceforge.net/


© Markus Püschel 
Computer Science 

How to write fast numerical code 

Spring 2015 

ATLAS 

Detect 
Hardware 

Parameters 

ATLAS  
Search Engine 

NR 
MulAdd 

L* 

L1Size 

ATLAS MMM 
Code Generator 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

Compile 
Execute 
Measure 

Mflop/s 

Model-Based ATLAS 

Detect 
Hardware 

Parameters 
Model NR 

MulAdd 
L* 

L1I$Size ATLAS MMM 
Code Generator 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

L1Size 

• Search for parameters replaced by model to compute them 
• More hardware parameters needed 

source: Pingali, Yotov, Cornell U. 15 

Optimizing MMM 

 Blackboard 

 References: 

"Automated Empirical Optimization of Software and the ATLAS project" by R. 
Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-
2):3-35, 2001 
 

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,  
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings 
of the IEEE, 93(2), pp. 358–386, 2005. 

Our presentation is based on this paper 
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http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
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Remaining Details 

 Register renaming and the refined model for x86 

 TLB effects 
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Dependencies 

 Read-after-write (RAW) or true dependency 

 

 

 

 Write after read (WAR) or antidependency 

 

 

 

 Write after write (WAW) or output dependency 

r1 = r3 + r4 
r2 = 2r1 

W 
R 

nothing can be done 
no ILP 

r1 = r2 + r3 
r2 = r4 + r5 

R 
W 

dependency only by  
name → rename 

r1 = r2 + r3 
r  = r4 + r5 

now ILP 

r1 = r2 + r3 
… 
r1 = r4 + r5 

W 
 

W 

dependency only by  
name → rename 

r1 = r2 + r3 
… 
r  = r4 + r5 

now ILP 

18 
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Resolving WAR 

 Compiler: Use a different register, r = r6  

 Hardware (if supported): register renaming 

 Requires a separation of architectural and physical registers 

 Requires more physical than architectural registers 

r1 = r2 + r3 
r2 = r4 + r5 

R 
W 

dependency only by  
name → rename 

r1 = r2 + r3 
r  = r4 + r5 

now ILP 
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Register Renaming 

 Hardware manages mapping architectural → physical registers 

 More physical than logical registers 

 Hence: more instances of each ri can be created 

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by 
resolving WAR dependencies 

r1 

r2 

r3 

rn 

ISA 
architectural (logical) registers physical registers 
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Scalar Replacement Again 

 How to avoid WAR and WAW in your basic block source code 

 Solution: Single static assignment (SSA) code: 

 Each variable is assigned exactly once 

    <more> 
    s266 = (t287 - t285); 
    s267 = (t282 + t286); 
    s268 = (t282 - t286); 
    s269 = (t284 + t288); 
    s270 = (t284 - t288); 
    s271 = (0.5*(t271 + t280)); 
    s272 = (0.5*(t271 - t280)); 
    s273 = (0.5*((t281 + t283) - (t285 + t287))); 
    s274 = (0.5*(s265 - s266)); 
    t289 = ((9.0*s272) + (5.4*s273)); 
    t290 = ((5.4*s272) + (12.6*s273)); 
    t291 = ((1.8*s271) + (1.2*s274)); 
    t292 = ((1.2*s271) + (2.4*s274)); 
    a122 = (1.8*(t269 - t278)); 
    a123 = (1.8*s267); 
    a124 = (1.8*s269); 
    t293 = ((a122 - a123) + a124); 
    a125 = (1.8*(t267 - t276)); 
    t294 = (a125 + a123 + a124); 
    t295 = ((a125 - a122) + (3.6*s267)); 
    t296 = (a122 + a125 + (3.6*s269)); 
    <more> 

no duplicates 
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Micro-MMM Standard Model 

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2) 

 Core: MU = 2, NU = 3 

 

 

 

 Code sketch (KU = 1) 

● = 

a 

b 

c 

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers 
loop over k { 
  load a  // 2 registers 
  load b  // 3 registers 
  compute // 6 indep. mults, 6 indep. adds, reuse a and b 
} 
c[0,0] = rc1, …, c[1,2] = rc6 

reuse in a, b, c 

22 
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Extended Model (x86) 

 MU = 1, NU = NR – 2 = 14 

 

 

 Code sketch (KU = 1) 

● = 
a b c 

reuse in c 

rc1 = c[0], …, rc14 = c[13] // 14 registers 
loop over k { 
  load a          // 1 register 
  rb  = b[1]      // 1 register 
  rb  = rb*a      // mult (two-operand) 
  rc1 = rc1 + rb  // add  (two-operand) 
  rb = b[2]       // reuse register (WAR: renaming resolves it) 
  rb = rb*a        
  rc2 = rc2 + rb 
  … 
} 
c[0] = rc1, …, c[13] = rc14 Summary: 

-  no reuse in a and b 
+ larger tile size for c since for b only one register is used 23 

Experiments 

 Unleashed: Not generated = 
hand-written contributed code 

 Refined model for computing 
register tiles on x86 

 Blocking is for L1 cache 

 

 Result: Model-based is 
comparable to search-based 
(except Itanium) 

 

graph: Pingali, Yotov, Cornell U. 

ATLAS generated 
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Remaining Details 

 Register renaming and the refined model for x86 

 TLB effects 

 Blackboard 
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