
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How to Write Fast Numerical Code
Spring 2015
Lecture: Dense linear algebra, LAPACK, MMM optimizations in ATLAS

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 How to make MMM fast: ATLAS, model-based ATLAS

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up most of the numerical computation across disciplines
(sciences, computer science, engineering)

 Efficient software is extremely relevant

3

The Path to LAPACK

 EISPACK and LINPACK (early 70s)
 Libraries for linear algebra algorithms

 Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart

 LINPACK still the name of the benchmark for the TOP500 (Wiki) list of
most powerful supercomputers

 Problem:
 Implementation vector-based = low operational intensity

(e.g., MMM as double loop over scalar products of vectors)

 Low performance on computers with deep memory hierarchy (in the 80s)

 Solution: LAPACK
 Reimplement the algorithms “block-based,” i.e., with locality

 Developed late 1980s, early 1990s

 Jim Demmel, Jack Dongarra et al.

4

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Matlab

 Invented in the late 70s by Cleve Moler

 Commercialized (MathWorks) in 84

 Motivation: Make LINPACK, EISPACK easy to use

 Matlab uses LAPACK and other libraries but can only call it if you
operate with matrices and vectors and do not write your own loops

 A*B (calls MMM routine)

 A\b (calls linear system solver)

5

LAPACK and BLAS

 Basic Idea:

 Basic Linear Algebra Subroutines (BLAS, list)

 BLAS 1: vector-vector operations (e.g., vector sum)

 BLAS 2: matrix-vector operations (e.g., matrix-vector product)

 BLAS 3: matrix-matrix operations (e.g., MMM)

 LAPACK implemented on top of BLAS

 Using BLAS 3 as much as possible

LAPACK

BLAS

static higher level functions

reimplemented kernels
for each platform

I(n) =

O(1)

O(1)

O(
p
C)

cache
size

6

http://www.netlib.org/blas/blasqr.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Why is BLAS3 so important?

 Using BLAS 3 (instead of BLAS 1 or 2) in LAPACK
= blocking
= high operational intensity I
= high performance

 Remember (blocking MMM):

* =

* =

I(n) =

O(1)

O(
p
C)

7

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 How to make MMM fast: ATLAS, model-based ATLAS

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

MMM: Complexity?

 Usually computed as C = AB + C

 Cost as computed before

 n3 multiplications + n3 additions = 2n3 floating point operations

 = O(n3) runtime

 Blocking

 Increases locality (see previous example)

 Does not decrease cost

 Can we reduce the op count?

9

Strassen’s Algorithm

 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische
Mathematik 13, 354-356, 1969
Until then, MMM was thought to be Θ(n3)

 Recurrence: T(n) = 7T(n/2) + O(n2) = O(nlog
2

(7)) ≈ O(n2.808)

 Fewer ops from n=654, but …

 Structure more complex → performance crossover much later

 Numerical stability inferior

 Can we reduce more?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

MMM: Cost by definition/Cost Strassen

log2(n)

crossover: 654

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

MMM Complexity: What is known

 Coppersmith, D. and Winograd, S.: "Matrix Multiplication via
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990

 MMM is O(n2.376)

 MMM is obviously Ω(n2)

 It could well be close to Θ(n2)

 Practically all code out there uses 2n3 flops

 Compare this to matrix-vector multiplication:
 Known to be Θ(n2) (Winograd), i.e., boring

11

MMM: Memory Hierarchy Optimization

 Huge performance difference for large sizes

 Great case study to learn memory hierarchy optimization

 12

matrix size

MMM (square real double) Core 2 Duo 3Ghz

triple loop

ATLAS generated

theoretical scalar peak

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

ATLAS

 BLAS program generator and library (web, successor of PhiPAC)

 Idea: automatic porting

 People can also contribute handwritten code

 The generator uses empirical search over implementation
alternatives to find the fastest implementation
no vectorization or parallelization: so not really used anymore

 We focus on BLAS 3 MMM

 Search only over cost 2n3 algorithms
(cost equal to triple loop)

LAPACK

BLAS

static

regenerated
for each platform

13

ATLAS Architecture

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)

NR
MulAdd

L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Hardware parameters:
• L1Size: size of L1 data cache
• NR: number of registers
• MulAdd: fused multiply-add available?
• L* : latency of FP multiplication

Search parameters:
• for example blocking sizes
• span search space
• specify code
• found by orthogonal line search

source: Pingali, Yotov, Cornell U. 14

http://math-atlas.sourceforge.net/

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

ATLAS

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute
Measure

Mflop/s

Model-Based ATLAS

Detect
Hardware

Parameters
Model NR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

• Search for parameters replaced by model to compute them
• More hardware parameters needed

source: Pingali, Yotov, Cornell U. 15

Optimizing MMM

 Blackboard

 References:

"Automated Empirical Optimization of Software and the ATLAS project" by R.
Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-
2):3-35, 2001

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings
of the IEEE, 93(2), pp. 358–386, 2005.

Our presentation is based on this paper

16

http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Remaining Details

 Register renaming and the refined model for x86

 TLB effects

17

Dependencies

 Read-after-write (RAW) or true dependency

 Write after read (WAR) or antidependency

 Write after write (WAW) or output dependency

r1 = r3 + r4
r2 = 2r1

W
R

nothing can be done
no ILP

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

r1 = r2 + r3
…
r1 = r4 + r5

W

W

dependency only by
name → rename

r1 = r2 + r3
…
r = r4 + r5

now ILP

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Resolving WAR

 Compiler: Use a different register, r = r6

 Hardware (if supported): register renaming

 Requires a separation of architectural and physical registers

 Requires more physical than architectural registers

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

19

Register Renaming

 Hardware manages mapping architectural → physical registers

 More physical than logical registers

 Hence: more instances of each ri can be created

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by
resolving WAR dependencies

r1

r2

r3

rn

ISA
architectural (logical) registers physical registers

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Scalar Replacement Again

 How to avoid WAR and WAW in your basic block source code

 Solution: Single static assignment (SSA) code:

 Each variable is assigned exactly once

 <more>
 s266 = (t287 - t285);
 s267 = (t282 + t286);
 s268 = (t282 - t286);
 s269 = (t284 + t288);
 s270 = (t284 - t288);
 s271 = (0.5*(t271 + t280));
 s272 = (0.5*(t271 - t280));
 s273 = (0.5*((t281 + t283) - (t285 + t287)));
 s274 = (0.5*(s265 - s266));
 t289 = ((9.0*s272) + (5.4*s273));
 t290 = ((5.4*s272) + (12.6*s273));
 t291 = ((1.8*s271) + (1.2*s274));
 t292 = ((1.2*s271) + (2.4*s274));
 a122 = (1.8*(t269 - t278));
 a123 = (1.8*s267);
 a124 = (1.8*s269);
 t293 = ((a122 - a123) + a124);
 a125 = (1.8*(t267 - t276));
 t294 = (a125 + a123 + a124);
 t295 = ((a125 - a122) + (3.6*s267));
 t296 = (a122 + a125 + (3.6*s269));
 <more>

no duplicates

21

Micro-MMM Standard Model

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2)

 Core: MU = 2, NU = 3

 Code sketch (KU = 1)

● =

a

b

c

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers
loop over k {
 load a // 2 registers
 load b // 3 registers
 compute // 6 indep. mults, 6 indep. adds, reuse a and b
}
c[0,0] = rc1, …, c[1,2] = rc6

reuse in a, b, c

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Extended Model (x86)

 MU = 1, NU = NR – 2 = 14

 Code sketch (KU = 1)

● =
a b c

reuse in c

rc1 = c[0], …, rc14 = c[13] // 14 registers
loop over k {
 load a // 1 register
 rb = b[1] // 1 register
 rb = rb*a // mult (two-operand)
 rc1 = rc1 + rb // add (two-operand)
 rb = b[2] // reuse register (WAR: renaming resolves it)
 rb = rb*a
 rc2 = rc2 + rb
 …
}
c[0] = rc1, …, c[13] = rc14 Summary:

- no reuse in a and b
+ larger tile size for c since for b only one register is used 23

Experiments

 Unleashed: Not generated =
hand-written contributed code

 Refined model for computing
register tiles on x86

 Blocking is for L1 cache

 Result: Model-based is
comparable to search-based
(except Itanium)

graph: Pingali, Yotov, Cornell U.

ATLAS generated

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Remaining Details

 Register renaming and the refined model for x86

 TLB effects

 Blackboard

25

