How to Write Fast Numerical Code
Spring 2015
Lecture: Dense linear algebra, LAPACK, MMM optimizations in ATLAS

Instructor: Markus Puschel
TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

i L hule Ziirich

Swiss Federal Institute of Technology Zurich

Today

m Linear algebra software: history, LAPACK and BLAS
m Blocking (BLAS 3): key to performance
m How to make MMM fast: ATLAS, model-based ATLAS

© Markus Piischel EI'H How to write fast numerical code
Computer Science Spring 2015

© Markus Piischel ETH
Computer Science «

Linear Algebra Algorithms: Examples

m Solving systems of linear equations
m Eigenvalue problems

m Singular value decomposition

m LU/Cholesky/QR/... decompositions

® ... and many others

= Make up most of the numerical computation across disciplines
(sciences, computer science, engineering)

m Efficient software is extremely relevant

The Path to LAPACK

m EISPACK and LINPACK (early 70s)
= Llibraries for linear algebra algorithms
= Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart
= LINPACK still the name of the benchmark for the TOP500 (Wiki) list of

most powerful supercomputers
m Problem:

" |mplementation vector-based = low operational intensity
(e.g., MMM as double loop over scalar products of vectors)

= Low performance on computers with deep memory hierarchy (in the 80s)
m Solution: LAPACK
= Reimplement the algorithms “block-based,” i.e., with locality

= Developed late 1980s, early 1990s
= Jim Demmel, Jack Dongarra et al.

How to write fast numerical code
Spring 2015

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500

© Markus Piischel ETH
Computer Science

Matlab

m Invented in the late 70s by Cleve Moler

m Commercialized (MathWorks) in 84

= Motivation: Make LINPACK, EISPACK easy to use

m Matlab uses LAPACK and other libraries but can only call it if you
operate with matrices and vectors and do not write your own loops

= A*B (calls MMM routine)
= A\b (calls linear system solver)

LAPACK and BLAS

m Basicldea:

static higher level functions

reimplemented kernels
for each platform

m Basic Linear Algebra Subroutines (BLAS, list) I(n) =
= BLAS 1: vector-vector operations (e.g., vector sum) 0(1)
= BLAS 2: matrix-vector operations (e.g., matrix-vector product) 0O(1)
= BLAS 3: matrix-matrix operations (e.g., MMM) 0(/O)
m LAPACK implemented on top of BLAS
= Using BLAS 3 as much as possible cgcl;e
1Z

How to write fast numerical code
Spring 2015

http://www.netlib.org/blas/blasqr.pdf

© Markus Piischel ETH
Computer Science

Why is BLAS3 so important?

m Using BLAS 3 (instead of BLAS 1 or 2) in LAPACK
= blocking
= high operational intensity |
= high performance

m Remember (blocking MMM): I(n) =
0o(1)
u [[111 |
]
= * =
u o(VC)

Today

m How to make MMM fast: ATLAS, model-based ATLAS

How to write fast numerical code
Spring 2015

MMM: Complexity?

Usually computedas C=AB +C

Cost as computed before
= n3 multiplications + n3 additions = 2n3 floating point operations
= =0(n3) runtime

Blocking
= |ncreases locality (see previous example)
= Does not decrease cost

Can we reduce the op count?

Strassen’s Algorithm

Strassen, V. "Gaussian Elimination is Not Optimal," Numerische
Mathematik 13, 354-356, 1969
Until then, MMM was thought to be O(n?)

Recurrence: T(n) = 7T(n/2) + O(n2) = O(n'o&,(7)) = O(n2-808)

Fewer ops from n=654, but ...
= Structure more complex - performance crossover much later

= Numerical stability inferior
MMM: Cost by definition/Cost Strassen

4.5
4

Can we reduce more? 35

crossover: 654

10

© Markus Piischel ETH
Computer Science «

How to write fast numerical code
Spring 2015

© Markus Piischel ETH
Computer Science

MMM Complexity: What is known

m Coppersmith, D. and Winograd, S.: "Matrix Multiplication via
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990

m MMM is O(n%37%)

= MMM is obviously Q(n?)
m It could well be close to O(n?)

m Practically all code out there uses 2n3 flops

m Compare this to matrix-vector multiplication:
= Known to be ©(n?) (Winograd), i.e., boring

11

MMM: Memory Hierarchy Optimization

MMM (square real double) Core 2 Duo 3Ghz

theoretical scalar peak

ATLAS generated

triple loop

matrix size

m Huge performance difference for large sizes

m Great case study to learn memory hierarchy optimization

12

How to write fast numerical code
Spring 2015

ATLAS

BLAS program generator and library (web, successor of PhiPAC)

m lIdea: automatic porting

LAPACK static

BLAS regenerated
for each platform

m People can also contribute handwritten code

m The generator uses empirical search over implementation
alternatives to find the fastest implementation
no vectorization or parallelization: so not really used anymore

m We focus on BLAS 3 MMM

m Search only over cost 2n3 algorithms
(cost equal to triple loop)

13

ATLAS Architecture

Compile,
MFLOPS
Execute,
Measure
L1Size NB I
22 —_—
Detect ATLAS Search MU,NU,KU ATLAS MM MiniMMM
L_MUNUKYU
Hardware NR__, Engine xFetch _ Code Generator —————— Source
Parameters - MulAdd | ch) MulAdd (MMCase)
L. Latency

1

Search parameters:
o for example blocking sizes
e span search space
e specify code
Hardware parameters: ¢ found by orthogonal line search
e L1Size: size of L1 data cache
¢ NR: number of registers
e MulAdd: fused multiply-add available?
e L. : latency of FP multiplication

source: Pingali, Yotov, Cornelt'l.

© Markus Piischel ETH How to write fast numerical code
Computer Science s < eenreion e Spring 2015

http://math-atlas.sourceforge.net/

© Markus Piischel ETH
Computer Science swas

AT LAS Mflop/s Compile
Measure
& L1Size — ,:‘?J -
erect NR ATLAS xFetch ATLAS MMM MiniMMM
[T MulAdd Search Engine MulAdd Code Generator Source
Parameters > 8 [biadd
 E— . latency
L1Size | w
Detect —Llssize L MUNUKU A1 a5 MMM MiniMMM
Hardware NR Model XFetch d Source
Parameters . MulAdd MulAdd Code Generator
[[lateny

e Search for parameters replaced by model to compute them

¢ More hardware parameters needed

source: Pingali, Yotov, CornellU.

Optimizing MMM

m Blackboard

m References:

"Automated Empirical Optimization of Software and the ATLAS project" by R.

Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-

2):3-35, 2001

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,

Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings

of the IEEE, 93(2), pp. 358—386, 2005.
Our presentation is based on this paper

16

How to write fast numerical code
Spring 2015

http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja

© Markus Piischel ETH
Computer Science

Remaining Details

m Register renaming and the refined model for x86

m TLB effects

17

m Write after read (WAR) or antidependency

now ILP
W r,=r,+r, name->rename r =r,+rg
m Write after write (WAW) or output dependency
Wr,=r,+r r=r,+r
! 2 * dependency only by 1 2 .
name -> rename now ILP
Wirp=r,+rs P o=+

Dependencies

m Read-after-write (RAW) or true dependency

W r, = r; + r, nothingcan be done
R r, = 2r; no ILP

R r, = r, + r; dependency only by r,=r,+r;

How to write fast numerical code
Spring 2015

© Markus Piischel ETH
Computer Science

Resolving WAR

R r, = r, + r; dependency only by r,=r, +r;

now ILP
Wr,=r,+r name - rename r =r,+nrg

m Compiler: Use a different register, r = r,

m Hardware (if supported): register renaming
" Requires a separation of architectural and physical registers
= Requires more physical than architectural registers

Register Renaming

ISA

physical registers architectural (logical) registers

m Hardware manages mapping architectural - physical registers
m More physical than logical registers
m Hence: more instances of each r; can be created

m Used in superscalar architectures (e.g., Intel Core) to increase ILP by
resolving WAR dependencies

How to write fast numerical code
Spring 2015

© Markus Piischel ETH
Computer Science

Scalar Replacement Again

= How to avoid WAR and WAW in your basic block source code

m Solution: Single static assignment (SSA) code:
® Each variable is assigned exactly once

<more>
5266 = (t287 - t285);
s267 = (t282 + t286);
$268 = (1282 - t286);
$269 = (t284 + t288);
s270 = (t284 - t288);
s271 = (8.5%(t271 + t280));
$272 = (0.5%(t271 - t280));
s273 = (8.5%((t281 + t283) - (t285 + t287)));
s274 = (0.5%(5265 - 5266));
- 1289 = ((9.0*s272) + (5.4%s273));
no duplicates s, - ((s.ava273) + (13.6%5273));
1291 = ((1.8*s271) + (1.2%s274));
1292 = ((1.2%s271) + (2.4*%s274));
a122 = (1.8*(t269 - t278));
al123 = (1.8*s267);
al24 = (1.8*s269);
1293 = ((al22 - al23) + al24);
al125 = (1.8*(t267 - t276));
t294 = (al25 + al23 + al24);
t295 = ((al25 - al22) + (3.6*s267));
t296 = (al22 + al25 + (3.6*s269));
<more>
21
.o
Micro-MMM Standard Model
m MU*NU + MU + NU < NR - ceil((Lx+1)/2)
m Core:MU=2,NU=3
|
I e b = - reuseina, b,
a C
m Code sketch (KU = 1)
rcl = c[0,0], .., rc6 = c[1,2] // 6 registers
loop over k {
load a // 2 registers
load b // 3 registers
compute // 6 indep. mults, 6 indep. adds, reuse a and b
}
c[0,0] = rc1, .., c[1,2] = rc6
22

How to write fast numerical code
Spring 2015

Extended Model (x86)

= MU=1,NU=NR-2=14

H o IS =
a b (

m Code sketch (KU =1)

loop over k {

}
c[@] = rc1, .., c[13 Summary:
- noreuseinaandb

rcl = c[0], .., rcl4 = c[13] // 14 registers

reuseinc

load a // 1 register

rb = b[1] // 1 register
{r‘b = rb*a // mult (two-operand)

rcl =rcl +rb // add (two-operand)

rb = b[2] // reuse register (WAR: renaming resolves it)
{r‘b = rb*a

rc2 =rc2 +rb

+ larger tile size for c since for b only one register is uséd

Experiments
Alpha 21264
m Unleashed: Not generated = Power 3
hand-written contributed code
Power 4
m Refined model for computing .-
register tiles on x86)
TwaSpare I
m Blocking is for L1 cache Hspett
Itanium2
Opteron 240

m Result: Model-based is
comparable to search-based AthlonMP
(except Itanium)

Pentium ITI

Pentium 4

Model

- Unleashed

0%

50% ATLAS 150% 200%

ATLAS generated —> CGwis

100%

graph: Pingali, Yotov, Cornell U. o

© Markus Piischel ETH
COMPULET SCIENCE i ecerm s of ecrmoors s

Institute of Technology Zurich

How to write fast numerical code
Spring 2015

© Markus Piischel ETH
Computer Science

Remaining Details

m Register renaming and the refined model for x86

m TLB effects
= Blackboard

25

How to write fast numerical code
Spring 2015

