
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How to Write Fast Numerical Code
Spring 2015
Lecture: Optimization for Instruction-Level Parallelism

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Organizational

 Midterm: April 15th

 Office hours fixed

 Projects

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How To Make Code Faster?

 It depends!

 Memory bound: Reduce memory traffic

 Reduce cache misses, register spills

 Compress data

 Compute bound: Keep floating point units busy

 Reduce cache misses, register spills

 Instruction level parallelism (ILP)

 Vectorization

 Next: Optimizing for ILP (an example)

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

3

Superscalar Processor

 Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a
sequential instruction stream and are usually scheduled dynamically.

 Benefit: Superscalar processors can take advantage of instruction
level parallelism (ILP) that many programs have

 Most CPUs since about 1998 are superscalar

 Intel: since Pentium Pro

4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

ILP

5

t2 = t0 + t1
t5 = t4 * t3
t6 = t2 + t5

t2 = t0 + t1 t5 = t4 * t3

t6 = t2 + t5

Code Dependencies

can be executed in parallel
and in any order

Hard Bounds: Pentium 4 vs. Core 2

 Pentium 4 (Nocona)

Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 10 1

Integer/Long Divide 36/106 36/106

Single/Double FP Multiply 7 2

Single/Double FP Add 5 2

Single/Double FP Divide 32/46 32/46

 Core 2
Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 3 1

Integer/Long Divide 18/50 18/50

Single/Double FP Multiply 4/5 1

Single/Double FP Add 3 1

Single/Double FP Divide 18/32 18/32
6

1/Throughput =

put on
black-
board

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

7

1/Throughput:
2 cycles

cycles

Single/Double FP Multiply 7 2

Hard Bounds (cont’d)

 How many cycles at least if

 Function requires n float adds?

 Function requires n int mults?

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Example Computation (on Pentium 4)

9

data_t: float or double or int

OP: + or *

IDENT: 0 or 1

void combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

d[0] OP d[1] OP d[2] OP … OP d[length-1]

Runtime of Combine4 (Pentium 4)

 Use cycles/OP

 Questions:

 Explain red row

 Explain gray row

void combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per OP

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Combine4 = Serial Computation (OP = *)

 Sequential dependence = no ILP!
Hence: performance determined by latency of OP! *

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per element (or per OP)

11

Loop Unrolling

 Perform 2x more useful work per iteration

void unroll2(vec_ptr v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i += 2)
 x = (x OP d[i]) OP d[i+1];
 /* Finish any remaining elements */
 for (; i < length; i++)
 x = x OP d[i];
 *dest = x;
}

12

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Effect of Loop Unrolling

 Helps integer sum

 Others don’t improve. Why?

 Still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

13

Loop Unrolling with Reassociation

 Can this change the result of the computation?

 Yes, for FP. Why?

void unroll2_ra(vec_ptr v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i += 2)
 x = x OP (d[i] OP d[i+1]);
 /* Finish any remaining elements */
 for (; i < length; i++)
 x = x OP d[i];
 *dest = x;
}

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Effect of Reassociation

 Nearly 2x speedup for Int *, FP +, FP *

 Why is that? (next slide)

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

bound 1.0 1.0 2.0 2.0

15

Reassociated Computation

 Breaks sequential dependency

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycle per OP ≈ D/2

 Measured is slightly worse for FP

*

*

1

*

*

*

d1 d0

*

d3 d2

*

d5 d4

*

d7 d6

x = x OP (d[i] OP d[i+1]);

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Loop Unrolling with Separate Accumulators

 Different form of reassociation

void unroll2_sa(vec_ptr v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++)
 x0 = x0 OP d[i];
 *dest = x0 OP x1;
}

17

Effect of Separate Accumulators

 Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *

 Breaks sequential dependency in a “cleaner,” more obvious way

 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

unroll2-sa 1.50 5.0 2.5 3.5

bound 1.0 1.0 2.0 2.0

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

 What changed:
 Two independent “streams” of

operations

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycles per OP ≈ D/2

What Now?

19

Unrolling & Accumulating

 Idea

 Use K accumulators

 Increase K until best performance reached

 Need to unroll by L, K divides L

 Limitations

 Diminishing returns:
Cannot go beyond throughput limitations of execution units

 Large overhead for short lengths: Finish off iterations sequentially

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Unrolling & Accumulating: Intel FP *
 Case

 Pentium 4

 FP Multiplication

 Theoretical Limit: 2.00

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.00 7.00 7.01 7.00

2 3.50 3.50 3.50

3 2.34

4 2.01 2.00

6 2.00 2.01

8 2.01

10 2.00

12 2.00

A
cc

u
m

u
la

to
rs

Why 4?

21

Why 4?

cycles

Those have to be
independent

Latency: 7 cycles

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)

1/Throughput:
2 cycles

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Unrolling & Accumulating: Intel FP +
 Case

 Pentium 4

 FP Addition

 Theoretical Limit: 2.00

FP + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 5.0 5.0 5.0 5.0

2 2.5 2.5 2.5

3 2.0

4 2.0 2.00

6 2.0 2.0

8 2.0

10 2.0

12 2.0

23

Unrolling & Accumulating: Intel Int *
 Case

 Pentium 4

 Integer Multiplication

 Theoretical Limit: 1.00

Int * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 10.0 10.0 10.0 10.0

2 5.0 5.0 5.0

3 3.3

4 2.5 2.5

6 1.67 1.67

8 1.25

10 1.1

12 1.14

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Unrolling & Accumulating: Intel Int +
 Case

 Pentium 4

 Integer addition

 Theoretical Limit: 1.00

Int + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 2.2 1.5 1.1 1.0

2 1.5 1.1 1.0

3 1.34

4 1.1 1.03

6 1.0 1.0

8 1.03

10 1.04

12 1.1

25

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 4.0 4.0 4.0 4.0

2 2.0 2.0 2.0

3 1.34

4 1.0 1.0

6 1.0 1.0

8 1.0

10 1.0

12 1.0

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.0 7.0 7.0 7.0

2 3.5 3.5 3.5

3 2.34

4 2.0 2.0

6 2.0 2.0

8 2.0

10 2.0

12 2.0

Pentium 4

Core 2
FP * is fully pipelined

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Summary (ILP)

 Instruction level parallelism may have to be made explicit in program

 Potential blockers for compilers

 Reassociation changes result (FP)

 Too many choices, no good way of deciding

 Unrolling

 By itself does often nothing (branch prediction works usually well)

 But may be needed to enable additional transformations
(here: reassociation)

 How to program this example?

 Solution 1: program generator generates alternatives and picks best

 Solution 2: use model based on latency and throughput

27

