
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How to Write Fast Numerical Code
Spring 2015
Lecture: Optimization for Instruction-Level Parallelism

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Organizational

 Midterm: April 15th

 Office hours fixed

 Projects

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How To Make Code Faster?

 It depends!

 Memory bound: Reduce memory traffic

 Reduce cache misses, register spills

 Compress data

 Compute bound: Keep floating point units busy

 Reduce cache misses, register spills

 Instruction level parallelism (ILP)

 Vectorization

 Next: Optimizing for ILP (an example)

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

3

Superscalar Processor

 Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a
sequential instruction stream and are usually scheduled dynamically.

 Benefit: Superscalar processors can take advantage of instruction
level parallelism (ILP) that many programs have

 Most CPUs since about 1998 are superscalar

 Intel: since Pentium Pro

4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

ILP

5

t2 = t0 + t1
t5 = t4 * t3
t6 = t2 + t5

t2 = t0 + t1 t5 = t4 * t3

t6 = t2 + t5

Code Dependencies

can be executed in parallel
and in any order

Hard Bounds: Pentium 4 vs. Core 2

 Pentium 4 (Nocona)

Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 10 1

Integer/Long Divide 36/106 36/106

Single/Double FP Multiply 7 2

Single/Double FP Add 5 2

Single/Double FP Divide 32/46 32/46

 Core 2
Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 3 1

Integer/Long Divide 18/50 18/50

Single/Double FP Multiply 4/5 1

Single/Double FP Add 3 1

Single/Double FP Divide 18/32 18/32
6

1/Throughput =

put on
black-
board

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

7

1/Throughput:
2 cycles

cycles

Single/Double FP Multiply 7 2

Hard Bounds (cont’d)

 How many cycles at least if

 Function requires n float adds?

 Function requires n int mults?

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Example Computation (on Pentium 4)

9

data_t: float or double or int

OP: + or *

IDENT: 0 or 1

void combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

d[0] OP d[1] OP d[2] OP … OP d[length-1]

Runtime of Combine4 (Pentium 4)

 Use cycles/OP

 Questions:

 Explain red row

 Explain gray row

void combine4(vec_ptr v, data_t *dest)
{
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per OP

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Combine4 = Serial Computation (OP = *)

 Sequential dependence = no ILP!
Hence: performance determined by latency of OP! *

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per element (or per OP)

11

Loop Unrolling

 Perform 2x more useful work per iteration

void unroll2(vec_ptr v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i += 2)
 x = (x OP d[i]) OP d[i+1];
 /* Finish any remaining elements */
 for (; i < length; i++)
 x = x OP d[i];
 *dest = x;
}

12

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Effect of Loop Unrolling

 Helps integer sum

 Others don’t improve. Why?

 Still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

13

Loop Unrolling with Reassociation

 Can this change the result of the computation?

 Yes, for FP. Why?

void unroll2_ra(vec_ptr v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i += 2)
 x = x OP (d[i] OP d[i+1]);
 /* Finish any remaining elements */
 for (; i < length; i++)
 x = x OP d[i];
 *dest = x;
}

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Effect of Reassociation

 Nearly 2x speedup for Int *, FP +, FP *

 Why is that? (next slide)

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

bound 1.0 1.0 2.0 2.0

15

Reassociated Computation

 Breaks sequential dependency

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycle per OP ≈ D/2

 Measured is slightly worse for FP

*

*

1

*

*

*

d1 d0

*

d3 d2

*

d5 d4

*

d7 d6

x = x OP (d[i] OP d[i+1]);

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Loop Unrolling with Separate Accumulators

 Different form of reassociation

void unroll2_sa(vec_ptr v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++)
 x0 = x0 OP d[i];
 *dest = x0 OP x1;
}

17

Effect of Separate Accumulators

 Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *

 Breaks sequential dependency in a “cleaner,” more obvious way

 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

unroll2-sa 1.50 5.0 2.5 3.5

bound 1.0 1.0 2.0 2.0

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

 What changed:
 Two independent “streams” of

operations

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycles per OP ≈ D/2

What Now?

19

Unrolling & Accumulating

 Idea

 Use K accumulators

 Increase K until best performance reached

 Need to unroll by L, K divides L

 Limitations

 Diminishing returns:
Cannot go beyond throughput limitations of execution units

 Large overhead for short lengths: Finish off iterations sequentially

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Unrolling & Accumulating: Intel FP *
 Case

 Pentium 4

 FP Multiplication

 Theoretical Limit: 2.00

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.00 7.00 7.01 7.00

2 3.50 3.50 3.50

3 2.34

4 2.01 2.00

6 2.00 2.01

8 2.01

10 2.00

12 2.00

A
cc

u
m

u
la

to
rs

Why 4?

21

Why 4?

cycles

Those have to be
independent

Latency: 7 cycles

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)

1/Throughput:
2 cycles

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Unrolling & Accumulating: Intel FP +
 Case

 Pentium 4

 FP Addition

 Theoretical Limit: 2.00

FP + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 5.0 5.0 5.0 5.0

2 2.5 2.5 2.5

3 2.0

4 2.0 2.00

6 2.0 2.0

8 2.0

10 2.0

12 2.0

23

Unrolling & Accumulating: Intel Int *
 Case

 Pentium 4

 Integer Multiplication

 Theoretical Limit: 1.00

Int * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 10.0 10.0 10.0 10.0

2 5.0 5.0 5.0

3 3.3

4 2.5 2.5

6 1.67 1.67

8 1.25

10 1.1

12 1.14

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Unrolling & Accumulating: Intel Int +
 Case

 Pentium 4

 Integer addition

 Theoretical Limit: 1.00

Int + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 2.2 1.5 1.1 1.0

2 1.5 1.1 1.0

3 1.34

4 1.1 1.03

6 1.0 1.0

8 1.03

10 1.04

12 1.1

25

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 4.0 4.0 4.0 4.0

2 2.0 2.0 2.0

3 1.34

4 1.0 1.0

6 1.0 1.0

8 1.0

10 1.0

12 1.0

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.0 7.0 7.0 7.0

2 3.5 3.5 3.5

3 2.34

4 2.0 2.0

6 2.0 2.0

8 2.0

10 2.0

12 2.0

Pentium 4

Core 2
FP * is fully pipelined

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Summary (ILP)

 Instruction level parallelism may have to be made explicit in program

 Potential blockers for compilers

 Reassociation changes result (FP)

 Too many choices, no good way of deciding

 Unrolling

 By itself does often nothing (branch prediction works usually well)

 But may be needed to enable additional transformations
(here: reassociation)

 How to program this example?

 Solution 1: program generator generates alternatives and picks best

 Solution 2: use model based on latency and throughput

27

