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How To Make Code Faster? 

 It depends! 

 Memory bound: Reduce memory traffic 

 Reduce cache misses, register spills 

 Compress data 

 Compute bound: Keep floating point units busy 

 Reduce cache misses, register spills 

 Instruction level parallelism (ILP) 

 Vectorization 

 Next: Optimizing for ILP (an example) 

 

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition, 
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010 
Part of these slides are adapted from the course associated with this book 
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Superscalar Processor 

 Definition: A superscalar processor can issue and execute multiple 
instructions in one cycle. The instructions are retrieved from a 
sequential instruction stream and are usually scheduled dynamically. 

 

 Benefit: Superscalar processors can take advantage of instruction 
level parallelism (ILP) that many programs have 

 

 Most CPUs since about 1998 are superscalar 

 Intel: since Pentium Pro 
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ILP 
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t2 = t0 + t1 
t5 = t4 * t3 
t6 = t2 + t5 

t2 = t0 + t1 t5 = t4 * t3 

t6 = t2 + t5 

Code Dependencies 

can be executed in parallel 
and in any order 

Hard Bounds: Pentium 4 vs. Core 2 

 Pentium 4 (Nocona) 

Instruction Latency Cycles/Issue 

Load / Store 5 1 

Integer Multiply 10 1 

Integer/Long Divide 36/106 36/106 

Single/Double FP Multiply 7 2 

Single/Double FP Add 5 2 

Single/Double FP Divide 32/46 32/46 

 Core 2 
Instruction Latency Cycles/Issue
  

Load / Store 5 1 

Integer Multiply 3 1 

Integer/Long Divide 18/50 18/50 

Single/Double FP Multiply 4/5 1 

Single/Double FP Add 3 1 

Single/Double FP Divide 18/32 18/32 
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1/Throughput:  
2 cycles 

cycles 

Single/Double FP Multiply        7         2 

Hard Bounds (cont’d) 

 How many cycles at least if 

 Function requires n float adds? 

 Function requires n int mults? 
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Example Computation (on Pentium 4) 
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data_t: float or double or int 

 

OP:  + or * 

IDENT: 0 or 1 

void combine4(vec_ptr v, data_t *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  data_t *d  = get_vec_start(v); 
  data_t t   = IDENT; 
  for (i = 0; i < length; i++) 
    t = t OP d[i]; 
  *dest = t; 
} 

d[0] OP d[1] OP d[2] OP … OP d[length-1] 

Runtime of Combine4 (Pentium 4) 

 Use cycles/OP 

 

 

 

 

 

 

 Questions: 

 Explain red row 

 Explain gray row 

void combine4(vec_ptr v, data_t *dest) 
{ 
  int i; 
  int length = vec_length(v); 
  data_t *d  = get_vec_start(v); 
  data_t t   = IDENT; 
  for (i = 0; i < length; i++) 
    t = t OP d[i]; 
  *dest = t; 
} 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 

Cycles per OP 
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Combine4 = Serial Computation (OP = *) 

 Sequential dependence = no ILP!  
Hence: performance determined by latency of OP! * 

* 

1 d0 

d1 

* 

d2 

* 

d3 

* 

d4 

* 

d5 

* 

d6 

* 

d7 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 

Cycles per element (or per OP) 
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Loop Unrolling 

 Perform 2x more useful work per iteration 

void unroll2(vec_ptr v, data_t *dest) 
{ 
    int length = vec_length(v); 
    int limit  = length-1; 
    data_t *d  = get_vec_start(v); 
    data_t x   = IDENT; 
    int i; 
    /* Combine 2 elements at a time */ 
    for (i = 0; i < limit; i += 2) 
 x = (x OP d[i]) OP d[i+1]; 
    /* Finish any remaining elements */ 
    for (; i < length; i++) 
 x = x OP d[i]; 
    *dest = x; 
} 
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Effect of Loop Unrolling 

 Helps integer sum 

 Others don’t improve. Why? 

 Still sequential dependency 

x = (x OP d[i]) OP d[i+1]; 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 
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Loop Unrolling with Reassociation 

 Can this change the result of the computation? 

 Yes, for FP. Why? 

void unroll2_ra(vec_ptr v, data_t *dest) 
{ 
    int length = vec_length(v); 
    int limit  = length-1; 
    data_t *d  = get_vec_start(v); 
    data_t x   = IDENT; 
    int i; 
    /* Combine 2 elements at a time */ 
    for (i = 0; i < limit; i += 2) 
 x = x OP (d[i] OP d[i+1]); 
    /* Finish any remaining elements */ 
    for (; i < length; i++) 
 x = x OP d[i]; 
    *dest = x; 
} 
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Effect of Reassociation 

 Nearly 2x speedup for Int *, FP +, FP * 

 Why is that? (next slide) 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

unroll2-ra 1.56 5.0 2.75 3.62 

bound 1.0 1.0 2.0 2.0 
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Reassociated Computation 

 Breaks sequential dependency 

 Overall Performance 
 N elements, D cycles latency/op 

 Should be (N/2+1)*D cycles: 
cycle per OP ≈ D/2 

 Measured is slightly worse for FP 

* 

* 

1 

* 

* 

* 

d1 d0 

* 

d3 d2 

* 

d5 d4 

* 

d7 d6 

x = x OP (d[i] OP d[i+1]); 
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Loop Unrolling with Separate Accumulators 

 Different form of reassociation 

void unroll2_sa(vec_ptr v, data_t *dest) 
{ 
    int length = vec_length(v); 
    int limit  = length-1; 
    data_t *d  = get_vec_start(v); 
    data_t x0  = IDENT; 
    data_t x1  = IDENT; 
    int i; 
    /* Combine 2 elements at a time */ 
    for (i = 0; i < limit; i+=2) { 
       x0 = x0 OP d[i]; 
       x1 = x1 OP d[i+1]; 
    } 
    /* Finish any remaining elements */ 
    for (; i < length; i++) 
 x0 = x0 OP d[i]; 
    *dest = x0 OP x1; 
} 

17 

Effect of Separate Accumulators 

 Almost exact 2x speedup (over unroll2) for Int *, FP +, FP * 

 Breaks sequential dependency in a “cleaner,” more obvious way 

 

 
 x0 = x0 OP d[i]; 
 x1 = x1 OP d[i+1]; 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

unroll2-ra 1.56 5.0 2.75 3.62 

unroll2-sa 1.50 5.0 2.5 3.5 

bound 1.0 1.0 2.0 2.0 
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Separate Accumulators 

* 

* 

1 d1 

d3 

* 

d5 

* 

d7 

* 

* 

* 

1 d0 

d2 

* 

d4 

* 

d6 

 x0 = x0 OP d[i]; 
 x1 = x1 OP d[i+1]; 

 What changed: 
 Two independent “streams” of 

operations 

 

 Overall Performance 
 N elements, D cycles latency/op 

 Should be (N/2+1)*D cycles: 
cycles per OP ≈ D/2 

What Now? 
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Unrolling & Accumulating 

 Idea 

 Use K accumulators 

 Increase K until best performance reached 

 Need to unroll by L, K divides L 

 

 Limitations 

 Diminishing returns: 
Cannot go beyond throughput limitations of execution units 

 Large overhead for short lengths: Finish off iterations sequentially 
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Unrolling & Accumulating: Intel FP * 
 Case 

 Pentium 4 

 FP Multiplication 

 Theoretical Limit: 2.00  

FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 7.00 7.00 7.01 7.00 

2 3.50 3.50 3.50 

3 2.34 

4 2.01 2.00 

6 2.00 2.01 

8 2.01 

10 2.00 

12 2.00 

A
cc

u
m

u
la

to
rs

 

Why 4? 
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Why 4? 

cycles 

Those have to be  
independent 

Latency: 7 cycles 

Based on this insight:  K = #accumulators = ceil(latency/cycles per issue) 

1/Throughput:  
2 cycles 
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Unrolling & Accumulating: Intel FP + 
 Case 

 Pentium 4 

 FP Addition 

 Theoretical Limit: 2.00  

FP + Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 5.0 5.0 5.0 5.0 

2 2.5 2.5 2.5 

3 2.0 

4 2.0 2.00 

6 2.0 2.0 

8 2.0 

10 2.0 

12 2.0 
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Unrolling & Accumulating: Intel Int * 
 Case 

 Pentium 4 

 Integer Multiplication 

 Theoretical Limit: 1.00  

Int * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 10.0 10.0 10.0 10.0 

2 5.0 5.0 5.0 

3 3.3 

4 2.5 2.5 

6 1.67 1.67 

8 1.25 

10 1.1 

12 1.14 
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Unrolling & Accumulating: Intel Int + 
 Case 

 Pentium 4 

 Integer addition 

 Theoretical Limit: 1.00 

Int + Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 2.2 1.5 1.1 1.0 

2 1.5 1.1 1.0 

3 1.34 

4 1.1 1.03 

6 1.0 1.0 

8 1.03 

10 1.04 

12 1.1 
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FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 4.0 4.0 4.0 4.0 

2 2.0 2.0 2.0 

3 1.34 

4 1.0 1.0 

6 1.0 1.0 

8 1.0 

10 1.0 

12 1.0 

FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 7.0 7.0 7.0 7.0 

2 3.5 3.5 3.5 

3 2.34 

4 2.0 2.0 

6 2.0 2.0 

8 2.0 

10 2.0 

12 2.0 

Pentium 4 

Core 2 
FP * is fully pipelined 
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Summary  (ILP) 

 Instruction level parallelism may have to be made explicit in program 

 Potential blockers for compilers 

 Reassociation changes result (FP) 

 Too many choices, no good way of deciding 

 Unrolling 

 By itself does often nothing (branch prediction works usually well) 

 But may be needed to enable additional transformations  
(here: reassociation) 

 

 How to program this example? 

 Solution 1: program generator generates alternatives and picks best 

 Solution 2: use model based on latency and throughput 
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