
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Instructor: Markus Püschel

TAs: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

How to Write Fast Numerical Code
Spring 2015, Lecture 1

Picture: www.tapety-na-pulpit.org

2
slide by Bertrand Meyer

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Today

 Motivation for this course

 Organization of this course

3

Audio/image/video processing

Scientific Computing

Physics/biology simulations

Consumer Computing

Computing
 Unlimited need for performance

 Large set of applications, but …

 Relatively small set of critical
components (100s to 1000s)

 Matrix multiplication

 Discrete Fourier transform (DFT)

 Viterbi decoder

 Shortest path computation

 Stencils

 Solving linear system

 ….

Embedded Computing

Signal processing, communication, control 4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Scientific Computing (Clusters/Supercomputers)

data.giss.nasa.gov www.foresight.org

Climate modelling Finance simulations Molecular dynamics

Other application areas:
 Fluid dynamics
 Chemistry
 Biology
 Medicine
 Geophysics

Methods:
 Mostly linear algebra
 PDE solving
 Linear system solving
 Finite element methods
 Others

5

Consumer Computing (Desktop, Phone, …)

Photo/video processing Audio coding Security

Image compression

Methods:
 Linear algebra
 Transforms
 Filters
 Others

Original JPEG JPEG2000

6

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Embedded Computing (Low-Power Processors)

Sensor networks Cars Robotics

Computation needed:
 Signal processing
 Control
 Communication

www.dei.unipd.it www.microway.com.au www.ece.drexel.edu

Methods:
 Linear algebra
 Transforms, Filters
 Coding

7

Research (Examples from Carnegie Mellon)

Biometrics Medical Imaging

Bioimaging
Computer vision

Bhagavatula/Savvides Moura

Kovacevic

Kanade

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Classes of Performance-Critical Functions

 Transforms

 Filters/correlation/convolution/stencils/interpolators

 Dense linear algebra functions

 Sparse linear algebra functions

 Coder/decoders

 Graph algorithms

 … several others

See also the 13 dwarfs/motifs in
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

9

How Hard Is It to Get Fast Code?

10

Algorithms

Software

Compilers

Microarchitecture

“compute Fourier transform”

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

e.g., a C function

How well does this work?

optimized executable

high performance

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

The Problem: Example 1

11

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Runtime [s]

Straightforward
“good” C code (1 KB)

or ?

The Problem: Example 1

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

12

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

or ?

The Problem: Example 1

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

13

The Problem: Example 1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

The Problem: Example 1

 Vendor compiler, best flags

 Roughly same operations count

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

Fastest code (1 MB)

12x

35x

15

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

The Problem: Example 2

 Vendor compiler, best flags

 Exact same operations count (2n3)

160x

Triple loop (< 1KB)

Fastest code (100 KB)

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Model predictive control

Eigenvalues

LU factorization

Optimal binary search organization

Image color conversions

Image geometry transformations

Enclosing ball of points

Metropolis algorithm, Monte Carlo

Seam carving

SURF feature detection

Submodular function optimization

Graph cuts, Edmond-Karps Algorithm

Gaussian filter

Black Scholes option pricing

Disparity map refinement

Singular-value decomposition

Mean shift algorithm for segmentation

Stencil computations

Displacement based algorithms

Motion estimation

Multiresolution classifier

Kalman filter

Object detection

IIR filters

Arithmetic for large numbers

Optimal binary search organization

Software defined radio

Shortest path problem

Feature set for biomedical imaging

Biometrics identification 17

“Theorem:”
Let f be a mathematical function to be implemented on a
state-of-the-art processor. Then

Performance of optimal implementation of f

Performance of straightforward implementation of f

≈
10–100

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Evolution of Processors (Intel)

19

Evolution of Processors (Intel)

Era of
parallelism

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

And There Will Be Variety …

Source: IEEE SP Magazine, Vol. 26, November 2009

Core i7

Nvidia G200

TI TNETV3020 Tilera Tile64

Arm Cortex A9

21

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

...
t282 = _mm_addsub_ps(t268, U247);
t283 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_shuffle_ps(t275, t275, _MM_SHUFFLE(2, 3, 0, 1))));
t284 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_sub_ps(_mm_setzero_ps(), ………)
s217 = _mm_addsub_ps(t270, U247);
s218 = _mm_addsub_ps(_mm_mul_ps(t277, _mm_set1_ps((-0.70710678118654757))), ………)
t285 = _mm_add_ps(s217, s218);
t286 = _mm_sub_ps(s217, s218);
s219 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(1, 0, 1, 0));
s220 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(3, 2, 3, 2));
s221 = _mm_shuffle_ps(t283, t285, _MM_SHUFFLE(1, 0, 1, 0));
...

 Compiler doesn’t do the job

 Doing by hand: nightmare

Vector instructions: 3x

Multiple threads: 3x

Memory hierarchy: 5x

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

 Compiler doesn’t do the job

 Doing by hand: nightmare
23

MMM kernel function

Summary and Facts I

 Implementations with same operations count can have vastly different
performance (up to 100x and more)

 A cache miss can be 100x more expensive than an operation

 Vector instructions

 Multiple cores = processors on one die

 Minimizing operations count ≠ maximizing performance

 End of free speed-up for legacy code

 Future performance gains through increasing parallelism

24

ATL_dmm4x2x4_avx.c

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Summary and Facts II

 It is very difficult to write the fastest code
 Tuning for memory hierarchy

 Vector instructions

 Efficient parallelization (multiple threads)

 Requires expert knowledge in algorithms, coding, and architecture

 Fast code can be large
 Can violate “good” software engineering practices

 Compilers often can’t do the job
 Often intricate changes in the algorithm required

 Parallelization/vectorization still unsolved

 Highest performance is in general non-portable

25

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Performance/Productivity
Challenge

27

Current Solution

Legions of programmers implement and optimize the same
functionality for every platform and whenever a new platform
comes out

28

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Better Solution: Autotuning

 Automate (parts of) the implementation or optimization

 Research efforts
 Linear algebra: Phipac/ATLAS, LAPACK,

Sparsity/Bebop/OSKI, Flame

 Tensor computations

 PDE/finite elements: Fenics

 Adaptive sorting

 Fourier transform: FFTW

 Linear transforms: Spiral

 …others

 New compiler techniques

29

Proceedings of the IEEE special issue, Feb. 2005

Promising new area but much more work needed …

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

This Course

30

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

This Course

 Obtain an understanding of performance (runtime)

 Learn how to write fast code for numerical problems

 Focus: Memory hierarchy and vector instructions

 Principles studied using important examples

 Applied in homeworks and a semester-long research project

 Learn about autotuning

Algorithms

Fast implementations of
numerical problems

Software

Compilers

Computer architecture

31

Today

 Motivation for this course

 Organization of this course

32

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Course: Times and Places Changed

 Lectures:

 Monday 10-12, CHN C14

 Thursday 9-10, CAB G51

 Recitations:

 Wednesday 13-15, HG D3.2

33

About this Course
 Team

 Me

 TAs: Gagandeep Singh Daniele Spampinato Alen Stojanov

 Office hours: to be determined

 Course website has ALL information

 Questions: fastcode@lists.inf.ethz.ch

 Finding project partner: fastcode-forum@lists.inf.ethz.ch

34

http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring14/course.html
mailto:fastcode@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

About this Course (cont’d)

 Requirements

 solid C programming skills

 matrix algebra

 Master student or above

 Grading

 40% research project

 25% midterm exam

 35% homework

 Wednesday slot

 Gives you scheduled time to work together

 Occasionally I will move lecture there

 By default will not take place

35

Research Project: Overview
 Teams of 4

 Yes: 4

 Topic: Very fast implementation of a numerical problem

 Until March 6th:

 find a project team

 suggest to me a problem or I give you a problem
Tip: pick something from your research or that you are interested in

 Register on project website + you get svn access

 Show “milestones” during semester

 One-on-one meetings

 Give short presentation end of semester

 Write 6 page standard conference paper (template will be provided)

 Submit final code (early semester break)

36

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Finding Project Team

 Teams of 4: no exceptions

 Use fastcode-forum@lists.inf.ethz.ch:

 “I have a project (short description) and am looking for partners”

 “I am looking for a team, am interested in anything related to visual
computing”

 In the beginning all of you are registered to that list

 Once team is formed (with or without project fixed) inform head TA,
you will get deregistered from the list

37

Finding Project

 Pick something you are interested in

 Ok if prior code exists

 Nothing that is dominated by

 dense linear algebra computations (matrix-matrix mult, solving linear
systems, Cholesky factorization etc.)

 fast Fourier transform

 Exact scope can be adapted during semester

 reduced to critical component

 specialized

 You are in charge of your project!

 If too big, adapt

 If turns out trivial expand

 Don’t come after 2 months and say project does not work

38

mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Organize Project

 Work as a team

 Start asap with a team meeting

 Keep communicating regularly during semester

 Be fair to your team members

 Being able to work as a team is part of the exercise

 Be a team player

39

Research Project: Possible Failures

 Don’t do this:

 never meet

 not respond to emails

 “I don’t have time right to work on this project in the next few months,
why don’t you start and I catch up later”

 “I have a paper deadline in 1 month, cannot do anything else right now”

 while not desparate(project-partners) do
 “I do my part until end of next week”
 … nothing happens …
end

 “why don’t you take care of the presentation”

 “why don’t you take care of the report, I’ll do the project presentation”

 Single point of failure:

 One team member is the expert on the project and says: I quickly code up
the basic infrastructure, then the three of you can join working on parts

 1 month later, the “quickly coding up” …
40

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Midterm Exam

 Covers first part of course

 Will fix time soon

 No substitute date

 There is no final exam

41

Homework

 Done individually

 Exercises on algorithm/performance analysis

 Implementation exercises

 Concrete numerical problems

 Study the effect of program optimizations, use of compilers, use of special
instructions, etc. (Writing C code + creating runtime/performance plots)

 Some templates will be provided

 Homework is scheduled to leave time for research project

 Small part of homework grade for neatness

 Late homework policy:

 No deadline extensions, but

 3 late days for the entire semester (at most 2 for one homework)

42

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Workload During Semester

43

Workload

Beginning of
semester

End of
semester

Homework Project
Midterm

Academic Integrity

 Zero tolerance cheating policy (cheat = fail + being reported)

 Homeworks

 All single-student

 Don’t look at other students code

 Don’t copy code from anywhere

 Ok to discuss things – but then you have to do it alone

 Code may be checked with tools

 Don’t do copy-paste

 code

 ANY text

 pictures

 especially not from Wikipedia

44

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Background Material

 See course website

 Prior versions of this course: see website

 I post all slides, notes, etc. on the course website

45

Class Participation

 I’ll start on time

 It is important to attend

 Most things I’ll teach are not in books

 I’ll use part slides part blackboard

 Do ask questions

 We like when people come to office hours

 I you drop the course, please unregister from edoz

46

