
263-2300-00: How To Write Fast Numerical Code
Assignment 1: 100 points

Due Date: Th, March 5th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=1317.
Before submission, you must enroll in the Moodle course. Enrollment key is “263-2300”.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after the due
time. Note that each homework will be available for submission on the Moodle system 2 days after the deadline.
However, if the accumulated time of the previous homework submissions exceeds 3 days, the homework will be
downgraded.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s or Daniele’s office. Late homework will not be accepted as a handwritten form.

• (Plots)
For plots/benchmarks, be concise, but provide necessary information (e.g., compiler and flags) and always
briefly discuss the plot and draw conclusions. Follow (at least to a reasonable extent) the small guide to
making plots (lecture 5).

• (Code)
When compiling the final code, ensure that you use optimization flags. Disable SSE for this exercise when
compiling. Under Visual Studio you will find it under Config / Code Generator / Enable Enhanced Instructions
(should be off). With gcc their are several flags: use -mno-abm (check the flag), -fno-tree-vectorize should also
do the job.

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. (15 pts) Get to know your machine
Determine and create a table for the following microarchitectural parameters of your computer.

(a) Processor manufacturer, name, and number

(b) Number of CPU cores

(c) CPU-core frequency

(d) Tick or tok model

For one core and without considering SSE/AVX:

(d) Cycles/issue for floating point additions

(e) Cycles/issue for floating point multiplications

(f) Maximum theoretical floating point peak performance in both flop/cycle and Gflop/s.

Tips: On Unix/Linux systems, typing ’cat /proc/cpuinfo’ in a shell will give you enough information
about your CPU for you to be able to find an appropriate manual for it on the manufacturer’s website
(typically AMD or Intel). The manufacturer’s website will contain information about the on-chip
details. (e.g. Intel). For Windows 7 ”Control Panel/System and Security/System” will show you your
CPU, for more info ”CPU-Z” will give a very detailed report on the machine configuration.

263-2300-00 SS15 / Assignment 1
Instructor: Markus Püschel

Pg 1 of 6 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=1317
http://www.cpuid.com/softwares/cpu-z.html


2. (25 pts) Cost analysis

Consider the following code that computes the strong closure of a set of octagonal inequalities over N
variables.

void strong_closure(double A[N][N]){

int i,j,k;

for(k = 0; k < N/2; k++){

for(i = 0; i < N; i++){

for(j = 0; j < N; j++){

A[i][j] = min(A[i][j], A[i][2k] + A[2k][j]);

A[i][j] = min(A[i][j], A[i][2k+1] + A[2k+1][j]);

A[i][j] = min(A[i][j], A[i][2k] + A[2k][2k+1] + A[2k+1][j]);

A[i][j] = min(A[i][j], A[i][2k+1] + A[2k+1][2k] + A[2k][j]);

}

}

for(i = 0; i < N; i++){

for(j = 0; j < N; j++){

A[i][j] = min(A[i][j], (A[i][i^1] + A[j^1][j])/2);

}

}

}

}

(a) Define a suitable cost measure C(N) assuming that different floating point operations have dif-
ferent costs.

(b) Compute the cost C(N) of the function strong closure.

(c) How would you change the definition and value of C(N) assuming that all operations have the
same cost?

Note: ’ˆ’ stands for bitwise xor. Integer operations are ignored. Lower-order terms (and only those)
may be expressed using big-O notation (this means: a result like 3n+O(log(n)) is ok but O(n) is not).

Solution:

(a) C(N) = Cmin ∗Nmin + Cadd ∗Nadd + Cdiv ∗Ndiv.

(b) Putting Nmin = 2.5N3, Nadd = 3.5N3, Ndiv = 0.5N3 we get, C(N) = Cmin ∗ 2.5N3 + Cadd ∗
3.5N3 + Cdiv ∗ 0.5N3.

(c) Putting Cmin = Cadd = Cdiv = 1 we get, C(N) = 6.5N3.

3. (15 pts) Floyd Warshall

The standard Floyd Warshall kernel computes all pairs shortest path between n vertices. We provide
a C source file and a C header file that times this kernel using different methods under Windows and
Linux (for x86 compatibles).

(a) Inspect and understand the code.

(b) Determine the exact number of (floating point) additions and min operations performed by the
compute() function in fw.c of the code.

(c) Using your computer, compile and run the code (Remember to turn off vectorization as explained
on page 1!). Ensure you get consistent timings between timers and for at least two consecutive
executions.

(d) Then, for all square matrices of sizes n between 100 and 2000, in increments of 100, create a plot
for the following quantities (one plot per quantity, so 3 plots total). n is on the x-axis and on the
y-axis is, respectively,

i. Runtime (in cycles).

ii. Performance (in flops/cycle).

iii. Using the data from exercise 1, percentage of the peak performance (without vector instruc-
tions) reached.

263-2300-00 SS15 / Assignment 1
Instructor: Markus Püschel

Pg 2 of 6 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw01files/fw.c
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw01files/tsc_x86.h


Figure 1: Runtime of fw.c.

Figure 2: Performance of fw.c.

(e) Briefly describe your plots, and submit your modified code to the Moodle and call it also fw.c.

Solution:

(a) See file fw.c.

(b) The code performs 2n3 add and min operations.

(c) Mention the experimental setup.

(d) The code was compiled with gcc v.4.8 and executed on a Haswell CPU (3.5 GHz Intel Core i7-
4771: 256 kB L1-D, 1 MB L2, 8 MB L3 cache) with no vectorization and O3 optimization flag
enabled.

i. See Fig. 1

ii. See Fig. 2

iii. See Fig. 3

263-2300-00 SS15 / Assignment 1
Instructor: Markus Püschel

Pg 3 of 6 Computer Science
ETH Zurich



Figure 3: Peak Performance of fw.c.

(e) Both min and add operation execute on the same port. The Haswell CPU can compute either
1 min or 1 add per cycle. The performance increases as long as data can fit into the L3 cache.
When the size of data exceeds the limit of L3 cache, the performance drops.

4. (20 pts) Convex Combination
Consider the computation of the convex combination of the elements of two arrays x & y of length n:

zi = wi · xi + (1− wi) · yi . (1)

The arrays z and w are also of length n and contain respectively the resulting element-wise combinations
and the weights.

(a) Write a C/C++ compute() function that performs the computation described above on arrays of
doubles. Save the file as convex.c(pp).

(b) Within the same file create a benchmarking infrastructure based on the timing function that
produces the most consistent results in Exercise 3.

(c) Then, for all sizes n between 2 and 5M (with increment of n) create a performance plot with
n on the x-axis (choose logarithmic scale) and performance (in flops/cycle) on the y-axis. Use
random initialization for arrays x, y, and w. For all n repeat your measurements at least 15 times
reporting the median in your plot.

(d) Briefly motivate eventual variations in performance in your plot.

Solution:

As a possible solution, we consider the scalar execution of convex on a Sandy Bridge CPU1.

(a-b) See the file convex.cpp.

(c) See Fig. 4.

(d) The code is always bound by data movement:

• When data fits in L1, performance is bound by 1.5 f/c. On Sandy Bridge we can either issue
two loads or one load and one store at any given cycle (on port 2 and 3 of the execution
core) with an average bandwidth of 1.5 doubles per cycle. Since on Sandy Bridge caches are
write-allocate, every value of z must also be loaded before being stored (cache policies will
be covered later on in class). The runtime for the computation is therefore approximately
4n doubles/1.5 doubles/c = 2.6n cycles.

1For technical details we refer to the Intel Optimization Manual, Sec. 2.2.1.

263-2300-00 SS15 / Assignment 1
Instructor: Markus Püschel

Pg 4 of 6 Computer Science
ETH Zurich

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf


1 10 100 1000 10000 100000 1000000 10000000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Performance (f/c)

L1 L2 L3

n (doubles)

Figure 4: Plot resulting from execution of convex.cpp. The code was compiled with icc v.14 and executed
on a Sandy Bridge CPU (Intel Core i7-2600: 32 kB L1-D, 256 kB L2, 8 MB L3; scalar peak performance: 2
f/c; L1 tp: 1.5 doubles/c; L2/L3 tp: 1 double/c; RAM tp: 0.5 double/c.

• When data fits in L2 we can fetch at most 1 double per cycle from L2 bounding the runtime
to 4n cycles and therefore performance by 1 f/c.

• Also from L3 we can fetch at most 1 double per cycle, not introducing any further bottleneck.

• Note that full bandwidth for the three levels of cache (i.e., 48 B/c for L1 and 32 B/c for
L2/L3) can only be approached by using 256-bit memory accesses (with AVX instructions).

• When data exceeds the last-level cache size the runtime becomes bound by the off-chip band-
width (8n cycles).

5. (20 pts) Bounds
We consider a slightly modified implementation of a so-called stencil computation using a nine-point
stencil h over an N ×N grid G as shown below.

for (i = 1; i < N-1; i++) {

for (j = 1; j < N-1; j++) {

G[i][j] =

h[0][0]*G[i-1][j-1]

+ h[1][0]*G[i][j-1] + h[1][1]*G[i][j]

+ h[2][0]*G[i+1][j-1] + h[2][1]*G[i+1][j] + h[2][2]*G[i+1][j+1];

}

}

(a) Determine the exact cost measured in flops (floating point operations).

(b) Determine an asymptotic upper bound on the operational intensity (assuming empty caches and
considering both reads and writes).

(c) On a Core i7 Sandy Bridge, consider only one core and determine hard lower bounds (not asymp-
totic) on the runtime (measured in cycles) based on

i. The op count (floating point ops only, no vectorization).

ii. Loads, for each of the following cases: All floating point data is L1-resident, L2-resident,
RAM-resident.

Solution

263-2300-00 SS15 / Assignment 1
Instructor: Markus Püschel

Pg 5 of 6 Computer Science
ETH Zurich



(a) C = 11 · (N − 2)2

(b) I(N) ≤ 11·(N−2)2

8·(N2+3+(N−2)2) flops/B. Therefore I(N) ∈ O(1)

(c) i. The CPU can compute 2 scalar ops/cycle, obtaining theoretical op count of rops = 11·(N−2)2

2 =
5.5 · (N −2)2. However, since there is one unit for addition and one unit for multiplication on
Core i7 Sandy Bridge, the minimum op count will be bound to the number of multiplications,
since the algorithm has one less addition. Thus making the value of op count rops = 6·(N−2)2

ii. Assuming tpL1 = tpL2 = 4 doubles/cycle, and tpRAM = 3/4 double/cycle, we obtain

rL1 = rL2 = N2+3
4 cycles and rRAM = 4N2

3 + 4 cycles.

6. (0 pts: for the enthusiast) Intel PCM v.s. Linux perf

Another way to perform cost analysis of a given algorithm is by using CPU performance counters.
Accessing these counters requires OS support and is different on each CPU type. perf is a convenient
Linux tool that abstracts away CPU hardware differences and is part of the Linux Kernel 2.6+. If your
machine is not running Linux, but is powered by an Intel-based CPU, Intel provides a cross-platform
performance monitoring tool called Intel Performance Counter Monitor (Intel PCM). Choose one of
the two, and do the following:

(a) Determine the performance monitoring events available on your CPU that monitor double preci-
sion floating point operations. Provide a list of mnemonic names of the events, usually available
in the CPU vendor architecture manual (For example Sandy Bridge: FP_COMP_OPS_EXE:X87,
FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE and FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE).

(b) For Linux perf:

i. Convert the obtained events into raw PMU events, in the form of rNNN where NNN is a
hexadecimal event descriptor. Use libpfm’s tool examples/check_events to perform the
conversion. Extended perf tutorial is available here.

ii. Determine the number of flops and cycles of the MMM program by feeding the raw PMU
events to perf.

iii. Determine the performance of the MMM loop by invoking perf tool inside your MMM pro-
gram. To achieve this level of granularity, perf must be invoked as a system call, with proper
instantiation of the PMU events. Modify the skeleton available here to obtain precise results.

(c) For Intel PCM:

i. Follow the OS specific instructions to setup the Intel PCM tool on your machine. Verify your
installation by running ./pcm.x 1.

ii. Convert the obtained events into raw PMU events, by determining their event number and
umask value, available in the Intel manual.

iii. Determine the performance of the MMM loop inside your MMM program. Modify the skeleton
available here to obtain precise results.

Note that Intel PCM tool is not stable on Mac OS X 10.10 (Yosemite). Although the MSR driver
could be compiled and loaded, a simple invocation of the pcm.x tool will result in a kernel panic, which
will force your Mac OS X to restart.

263-2300-00 SS15 / Assignment 1
Instructor: Markus Püschel

Pg 6 of 6 Computer Science
ETH Zurich

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://perfmon2.sourceforge.net/
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw01files/mmmperf.zip
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw01files/mmmpcm.zip

