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ABSTRACT

Recent work introduced a framework for signal processing
(SP) on meet/join lattices. Such a lattice is partially ordered
and supports a meet (or join) operation that returns the great-
est lower bound and the smallest upper bound of two ele-
ments, respectively. Lattices appear in various domains and
can be used, for example, to express rankings in social choice
theory or multisets in combinatorial auctions. Discrete lat-
tice SP (DLSP) uses the meet operation as shift and derives
associated notions of convolution and Fourier transform for
signals indexed by lattices. In this paper we extend DLSP
with Wiener filtering for denoising and demonstrate it on two
prototypical applications.

Index Terms— Meet/join lattice, partially ordered set, al-
gebraic signal processing, combinatorial auction, ranked data

1. INTRODUCTION

Recent years have seen the advent of generalized signal pro-
cessing (SP) frameworks. The most popular example is graph
SP [1, 2], which generalizes classical SP concepts such as
shift, shift-invariant filters and Fourier transform to signals
indexed by the vertices of a graph. The availability of these
concepts has brought new tools for processing or learning
with data on sensor networks, biological networks, or point
clouds [3, 4].

There are other non-Euclidean index domains besides
graphs and first steps towards associated SP frameworks. Ex-
amples include simplicial complexes [5], powersets [6, 7],
hypergraphs [8], and lattices [9–11]. A lattice is a partially
ordered set with a meet and join operation that returns the
greatest lower bound and smallest upper bound for any two
elements, respectively. Data, or signals, on lattices natu-
rally occur in various areas including ranked data in social
choice theory [12], bidders’ value functions in combinato-
rial auctions [13], statistical data on formal concepts [14]
or genotype-phenotype mappings in computational biol-
ogy [15].

Lattice SP [9, 11] uses the meet (or join) operation to de-
fine a shift operation and then uses the general procedure from
algebraic signal processing [16] to obtain an associated notion
of convolution, Fourier transform, and frequency response.

Contribution. In this paper, we extend lattice SP with a
suitable notion of Wiener filtering. Inspired by Wiener filter-
ing on graphs [17], we first define an energy-preserving shift
on lattices, which is then used for the construction of Wiener
filters, which are polynomials in this shift. We show two pro-
totypical application examples for denoising lattice signals in
the context of combinatorial auctions and ranked data.

2. DISCRETE LATTICE SIGNAL PROCESSING

We provide the necessary background on lattice theory [18]
and discrete lattice SP (DLSP) following [9].

Poset. A finite set L is a partially ordered set (poset) if
it is equipped with a binary relation ≤ that satisfies for the
elements a, b, c ∈ L

1. reflexivity, a ≤ a,
2. antisymmetry, a ≤ b and b ≤ a implies a = b, and
3. transitivity, a ≤ b and b ≤ c implies a ≤ c.

Note that not all elements in L need to be comparable. For
example, the powerset (set of all subsets) of a finite set is a
poset with ≤ = ⊆.

Semilattice. A (meet-)semilattice is a poset with a meet
operation that returns the unique greatest lower bound (or
meet) a ∧ b of two elements a, b ∈ L. This means for all
c with c ≤ a and c ≤ b also c ≤ a ∧ b holds.

For example, the powerset of a finite set is a semilattice
with ∧ = ∩ (intersection).

An analogous definition considers the join ∨, which re-
turns the smallest upper bound but is not needed in this paper.
Here, we will say lattice to mean meet-semilattice.

Cover graph. We write a < b if a ≤ b and a 6= b. An
element b covers a, if a < b and no element is in between. A
lattice can be visualized by its cover graph with nodes V = L
and edges E = {(b, a) | b covers a}. It is usually drawn from
top (greater elements) to bottom (smaller elements).

The cover graph of an example lattice L = {a, . . . , h}
with 8 elements is shown in Fig. 1a. It shows that, e.g., g∧f =
d, e∧d = a, e∧b = b. The element a is the unique minimum,
the meet of all elements.

Lattice signal. Given a latticeLwith n elements, a lattice
signal s associates a value with each of its elements. Formally,

s = (sa)a∈L ∈ Cn.



(a) L (b) s



1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
−1 0 0 1 0 0 0 0

0 −1 0 0 1 0 0 0
2 −1 −1 −1 0 1 0 0
0 0 0 −1 0 0 1 0
0 1 0 0 −1 −1 0 1


(c) DLT (d) ŝ

Fig. 1: Meet-semilattice L, example lattice signal s, lattice
Fourier transform DLT, and ŝ. The rows and columns of F
are indexed by the lattice elements in alphabetical order.

To make it a vector, we choose a so-called topological order-
ing from small to large elements. An example signal is shown
in Fig. 1b.

Lattice shifts. For each x ∈ L, DLSP defines an as-
sociated linear shift from the meet operation, which can be
expressed as a matrix Tx:

Txs = (sa∧x)a∈L (1)

Note that the shifts are idempotent, i.e., T 2
x = Tx.

Filters and convolution. As usual, filters are linear com-
binations of shifts, which yields the associated notion of con-
volution. Namely, if h ∈ Cn, then

h ∗ s =
(∑
x∈L

hxTx

)
s =

(∑
x∈L

hxsa∧x

)
a∈L

. (2)

Filters are shift-invariant, h∗Txs = Tx(h∗ s), since the meet-
operation is commutative.

Fourier transform. The Fourier transform, called dis-
crete lattice transform (DLT) simultaneously diagonalizes all
filters [11], i.e., all shift matrices Tx. It is obtained from lat-
tice theory [19], and defined as

ŝ = DLTL s, DLTL = [µ(x, y)]y,x∈L.

Here, µ is the Moebius function, which can be computed re-
cursively via

µ(x, x) = 1 and µ(x, y) = −
∑

x≤z<y

µ(x, z). (3)

The DLT for the lattice in Fig. 1a is shown in Fig. 1c, and the
spectrum ŝ of s in Fig. 1b in Fig. 1d. Note that the DLT is not
orthogonal and always of triangular shape (with topological
ordering of L).

The inverse Fourier transform is given by DLT−1L =
[ιy≤x]x,y∈L, where ιy≤x = 1 if y ≤ x and ιy≤x = 0 other-
wise.

Fast algorithms for computing the DLT exist [20].
Difference to graph SP. The meet shifts in DLSP operate

differently from the adjacency shift in [21], capturing the par-
tial order structure rather than adjacency in the cover graph.
Also note that cover graphs are directed and acyclic and thus
the adjacency matrix has 0 as the only eigenvalue, a problem
in graph SP [3, Sec.III-A].

3. ENERGY-PRESERVING SHIFT AND WIENER
FILTERS

In this section we port Wiener filtering to DLSP. The basic
idea is to first define a shift operator that preserves energy in
the frequency domain and then design Wiener filters as poly-
nomials in this shift. This high level approach is analogous to
the one in [17] for graph SP, but instantiated for lattices. The
idea of energy-preserving shift addresses the problem that the
natural shift operators (e.g., adjacency shift in graph SP or
lattice shifts here) do not have this property, unlike the (trans-
lation) shift underlying classical discrete-time SP.

Energy-preserving shift. We define the energy-preserving
shift as

Tep = DLT−1 ·Λep ·DLT, (4)

where Λep = diag0≤k<n(exp(−2πjk/n), i.e., we force the
same frequency response as the standard cyclic shift has. By
construction, Tep preserves energy in the frequency domain:
‖T̂eps‖2 = ‖Λepŝ‖2 = ‖̂s‖2.

Lattice Wiener filters. Wiener filtering designs an opti-
mal denoising filter from a noisy version of a known reference
signal. This filter can then be used to denoise similar signals
that are noisy w.r.t. the same noise model.

Consider the reference signal s and a noisy measurement
y = s + n. The Wiener filter of order N based on the energy-
preserving shift, mimicking [17], has the (matrix) form

H =

N∑
k=0

hkT
k
ep, (5)

where the filter coefficients h = (h0, . . . , hN ) are the solution
of the minimization problem

min
h
‖Hy− s‖22. (6)

Thus, the Wiener filter H is the optimal denoising filter with
respect to the Euclidean error. Note that the powers of Tep
can be computed efficiently in the frequency domain: T k

ep =

DLT−1 Λk
ep DLT.

Equation (6) is equivalent to

min
h
‖Bh− s‖22, with B = [y Tepy . . . TN

ep y], (7)

and can be solved by setting the gradient of ‖Bh−s‖22 to zero
and solving for h, which is equivalent to solving the linear
system

BHBh = BHs. (8)

4. EXPERIMENTS

In this section, we first introduce a noise model suitable for
lattice signals and then evaluate our Wiener filters on two pro-
totypical types of lattice signals.



Lattice white noise. White noise has equal intensity
across frequencies. In discrete time SP, white noise can be
simulated by sampling a Gaussian noise vector with indepen-
dent components and adding it to the signal. Doing so with a
lattice signal is not equivalent to white noise since the DLT is
not orthogonal. Thus, we simulate white noise directly in the
frequency domain.

The same phenomenon occurs in graph SP with an
irregularity-aware Fourier transform [22].

Experimental setup. To properly evaluate our Wiener
filters and exclude overfitting effects, we compute the filter
on a known reference signal sref and its noisy version yref =

sref + nref, where nref = DLT−1L n̂ref is our lattice white noise,
i.e., n̂ref is sampled from a zero-mean isotropic Gaussian dis-
tribution. Then, we evaluate the learnt filter on unknown noisy
test signals ytest = stest + ntest with a different noise sample
from the same noise model.

Benchmark. As benchmark for the lattice Wiener filter,
we use a graph Wiener filter on the cover graph. Doing so
with the directed adjacency matrix (shift) A produced mean-
ingless results since B in (8) becomes rank-deficient. Hence
we use also here the energy-preserving shift [17]. Since it
requires A to be diagonalizable, and A has only eigenvalue
0 with typically Jordan blocks of size greater than 1, we use
the undirected cover graph instead. Note that the compari-
son puts the benchmark at a disadvantage, since lattice white
noise cannot be modulated with graph filters.

4.1. Spectrum auctions

Spectrum auctions [23] are combinatorial auctions [13] in
which licenses for bands of the electromagnetic spectrum are
sold to a set of bidders (e.g., telecommunication companies).
For each frequency band, multiple licenses may exist, mak-
ing the set of available licenses a multiset (a set that allows
for duplicate elements). Bidders submit bids for submul-
tisets of licenses. Thus, each bidder can be modeled as a
multiset function (i.e., a mapping from multisets to positive
values) called value function. As explained next, the set of
all submultisets is a lattice, making value functions lattice
signals.

Lattice. Formally, we represent the multiset of all avail-
able licenses with a vector m ∈ Nf

0 , where the entry mi > 0
is the number of available licenses of the ith frequency band,
1 ≤ i ≤ f . We call a ∈ Nf

0 a submultiset of m if a ≤ m,
defined as ai ≤ mi for all i ∈ {1, . . . , f}. The set of all
submultisets L = {a ∈ Nf

0 : a ≤ m} is a lattice with meet
a ∧ b = min(a, b), where the minimum is taken component-
wise. Thus, |L| =

∏
1≤i≤f (mi + 1).

Signal. Given a bidder, its value function assigns values
sa ∈ R+ to all submultisets of licenses a ∈ L and, thus, is a
lattice signal s = (sa)a∈L.

Experiment. As common in this field (e.g., [24]), we
rely on simulated bidders. To obtain a reference and a test

(a) (b)

Fig. 2: (a) The normalized bidder signal sref on which the
filter coefficients are calculated, and (b) a sample nref of lattice
white noise, which is used to corrupt the signal.

signal, we simulate bidder valuation functions using the so-
called single region value model (SRVM) from the spectrum
auctions test suite [25]. In SRVM there three bands with
multiplicities 6, 14 and 9, i.e., m = (6, 14, 9)T and |L| =
7 · 15 · 10 = 1050, and four different parameterized bid-
der types (small, high, primary, and secondary). Bidders are
sampled by randomly sampling their parameters. For our ref-
erence signal we sampled one secondary bidder sref and for
our test signal one primary bidder stest. We show sref and
a sample nref of lattice white noise in Fig. 2. Note that the
(non-orthogonal) inverse Fourier transform DLT−1L sums up
the smaller elements of each entry, which explains the visible
structure. For example, the value of nref indexed by the max-
imal element has a value near zero since it is the sum of all
elements in a zero-mean isotropic Gaussian vector.

Result. In Fig. 3, we evaluate our Wiener filters in terms
of relative reconstruction error on the reference (dashed) and
test bidder (solid) for increasing filter order N . We compare
lattice Wiener filters (red) with graph Wiener filters (blue).
We add lattice white noise as defined above to both signals
such that the signal-to-noise ratio is 12.5 ± 2.7 dB, compute
the Filter coefficients on the reference signal (Fig. 2a) and
its corrupted version, and apply the resulting filter to the cor-
rupted test signal. To obtain mean (lines) and standard devia-
tions (shaded areas), we repeated the experiment 100 times.

We observe that the lattice Wiener filters denoise the test
signal and that the standard deviation stays within the range
of the standard deviation from the noise. Beyond N = 40,
the error curve flattens. For the reference signal, the error
continues to decrease and the standard deviation goes to zero,
a sign of (expected) overfitting. The graph Wiener filters on
the other hand perform poorly, probably because they cannot
properly modulate the lattice white noise.

4.2. Rankings

Ranking data is used in social choice theory [26] to model
preferences of human groups. In its simplest form ranked data
is obtained when individuals have to rank a set of choices.
Each possible ranking corresponds to a permutation of the set
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Fig. 3: Denoising a bidder signal with lattice (red) and graph
Wiener filter (blue) of different order. The results on the ref-
erence signals in both cases are shown dashed. The shaded
areas are the standard deviations over 100 simulations.

of choices and can be associated with the number of individ-
uals that ranked the choices accordingly. As we explain next,
the set of all permutations is a lattice, which makes the indi-
vidual counts a lattice signal.

Lattice. Formally, the permutations of a list (1, . . . , n)
with a suitable initial ordering of n choices form a lattice
Ln [27] of size n!. A permutation b = (b1, . . . , bn) covers
the permutation a = (a1, . . . , an) iff there exists a transposi-
tion τi that exchanges two consecutive elements in positions
i, i+ 1, such that

b = a · τi = (a1, ..., ai−1, ai+1, ai, ai+2, ..., an) (9)

The partial order ≤ and the meet ∧ are now derived from the
cover graph. The original (1, . . . , n) is the minimum and we
have a ≤ b if there is a path from b to a, i.e., if there exists a
sequence of transpositions such that b = a · τi1 · · · τik . The
meet a ∧ b is the first element in L that can be reached from
both a and b (using transpositions). E.g., (1, 2, 3) ≤ (1, 3, 2)
and (2, 3, 1)∧(1, 3, 2) = (1, 2, 3) as (2, 3, 1) = (1, 2, 3)·τ1·τ2
and (1, 3, 2) = (1, 2, 3) · τ2. The maximal element in Ln is
(n, . . . , 1).

Signal. We consider synthetic low-frequency signals with
decaying spectrum as explained next.

Experiment. We consider the ranking lattice L6 con-
taining 6! = 720 permutations/rankings and create synthetic
low frequency signals. Specifically, we set for every b ∈ L,
ŝb = α`, where α < 1 and ` is the distance of b from the
minimum in the cover graph. For the reference signal sref we
set α = 0.5. We create two test signals stest1 and stest2 with
α = 0.45 and α = 0.55, respectively.

Fig. 4 shows the reference signal sref and a sample nref

from our noise distribution.
Results. In Fig. 5, we evaluate our Wiener filters in terms

of relative reconstruction error on the reference (dashed) and
test signals (solid) for increasing filter order N . Again we
compare lattice Wiener filters (red) with graph Wiener filters
(blue). We add lattice white noise as defined above to both

(a) (b)

Fig. 4: (a) The ranking signal sref on which the Wiener fil-
ter coefficients are calculated, and (b) a sample nref of lattice
white noise used to corrupt the signal.
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Fig. 5: Denoising synthetic signals on the permutation lattice
with lattice (red) and graph Wiener filter (blue). The results
on the reference signals in both cases are shown dashed. The
shaded areas are the standard deviations over 100 simulations.

signals such that the signal-to-noise ratio is 17±1.3 dB, com-
pute the Filter coefficients on the reference signal (Fig. 4a)
and its corrupted version, and apply the resulting filter to the
corrupted test signals. In order to obtain means (lines) and
standard deviations (shaded areas), we repeated the experi-
ment 100 times. The results are qualitatively similar as in the
previous experiment.

5. CONCLUSION

We have expanded discrete-lattice SP with a suitable defini-
tion and construction of Wiener filters. We thus add to the
body of work that shows how SP methods can be ported and
used on signals with different index domains. In particular,
and similar to the situation in SP on directed graphs, this is
possible even if the Fourier transform is not orthogonal.

As a proof of concept, we performed two prototypical de-
noising experiments, also showing that graph Wiener filters
cannot help with lattice white noise. The construction and
application of Wiener filters is computationally efficient and
should easily scale to lattices with a few thousands elements.
Future work should go deeper into application domains to put
the filters to real-world use.
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[6] Markus Püschel, “A discrete signal processing framework for
set functions,” in Proc. Int. Conf. Acoust., Speech, and Signal
Process. (ICASSP), 2018, pp. 1935–1968.
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