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ABSTRACT
Graph signal processing on directed graphs poses theoretical
challenges since an eigendecomposition of filters is in gen-
eral not available. Instead, Fourier analysis requires a Jor-
dan decomposition and the frequency response is given by
the Jordan normal form, whose computation is numerically
unstable for large sizes. In this paper, we propose to replace a
given adjacency shiftA by a diagonalizable shiftAD obtained
via the Jordan-Chevalley decomposition. This means, as we
show, that AD generates the subalgebra of all diagonalizable
filters and is itself a polynomial inA (i.e., a filter). For several
synthetic and real-world graphs, we show how AD adds and
removes edges compared to A.

Index Terms— graph signal processing, digraphs, Jordan
normal form, algebraic signal processing, diagonalizable fil-
ters

1. INTRODUCTION

There is a plethora of data that is, or can be viewed as, in-
dexed by the vertices of graphs. Examples include biological
networks, social networks, or communication networks such
as the internet [1, 2]. To bring signal processing (SP) tools
to such graph data, fundamental SP concepts including shift,
filters, Fourier transform, and frequency response, have been
generalized to the graph domain [3, 4] and build the founda-
tion of graph signal processing (GSP). There are two basic
variants of GSP. The framework in [4] builds on algebraic
signal processing (ASP) [5] to derive these concepts from the
definition of the shift, given by the adjacency matrix. In con-
trast, [3] defines the eigenbasis of the graph Laplacian as the
graph Fourier basis. In ASP terms, it chooses the Laplacian
matrix as shift operator.

Undirected graphs. Both approaches yield a satisfying
GSP framework for undirected graphs. Namely, since the
shift operator is symmetric, a unitary Fourier basis exists. As
a consequence, the shift, and thus all filters (polynomials in
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the shift) are diagonalizable, have one-dimensional frequency
responses, and Parseval’s theorem holds. Using these GSP
tools many applications for graph signals have been devel-
oped, e.g., for compression, sampling, denoising, label prop-
agation, outlier detection and alias-free filtering [4, 6, 7, 8].
In addition, graph convolutions are the foundation of graph
convolutional neural networks that have been applied to su-
pervised [9] and semisupervised learning tasks [10].

Directed graphs. Unfortunately, for directed graphs (di-
graphs), the GSP theory does not translate as well into prac-
tice. The reason is that the Fourier basis, given by subspaces
that are invariant under filtering, is now determined by Jordan
subspaces and the frequency response by the Jordan normal
form. This results in various challenges for GSP theory and
applications including:

1. Frequency components are no longer one-dimensional.
2. The Fourier basis and transform are not unitary.
3. The computation of the Jordan decomposition is nu-

merically unstable [11, 12].
There have been various attempts to overcome these prob-
lems. Reference [13] replaces the Jordan basis with the ba-
sis corresponding to the block-diagonal Schur factorization,
which factorizes a matrix A into a block-diagonal matrix
T = FAF−1. Similar to the Jordan basis, this basis de-
composes the signal space into filtering invariant subspaces,
but, not necessarily the irreducible ones. Reference [14]
introduces a Hermitian Laplacian operator based on a gen-
eralization of the Hermitian adjacency matrix [15]. The
Hermitian Laplacian is as the name suggests Hermitian and,
by construction, captures the directions of the edges of the
underlying graph. The work in [16, 17] defines the directed
graph Fourier transform as the orthonormal basis with either
minimal directed total variation or maximum spread, respec-
tively. Further, [18] addresses the ambiguity in the choice of
Jordan base vectors and proposes a basis-free computation of
spectral components.

Contributions. In this work, we stay within the GSP
framework of [4] and make use of the Jordan-Chevalley de-
composition [19, 20] to derive a diagonalizable shiftAD from
a given digraph shift (adjacency matrix) A. We show that AD
is a polynomial in A (i.e., a valid filter) and that it generates



the set of all diagonalizable filters. More precisely, the di-
agonalizable polynomials in A are precisely the polynomials
in AD. We present prototypical experiments with synthetic
and real-world graphs. They show that AD often differs by a
relatively small number of edges from A. This suggests that
it might be possible to amend a graph given by A to AD to
overcome the problems with Jordan bases.

2. SIGNAL PROCESSING ON DIRECTED GRAPHS

We briefly review graph signal processing for directed graphs
(digraphs) as introduced in [4]. Let G be a weighted digraph
with vertices V = {v1, . . . , vn}, edges E, and an adjacency
matrix A ∈ Cn×n containing the weights of the edges.

Graph signal. A graph signal on G is a signal indexed by
its vertices

s : V → C; v 7→ sv. (1)

For mathematical convenience, we fix a vertex ordering and
write the signal as column vector s = (sv1 , . . . , svn)

T .
Graph shift. GSP [4] is an instantiation of the algebraic

signal processing theory [5] to graphs. Hence, convolution,
filters and Fourier transform are derived from the definition
of a graph shift (that we also denote with A):

A : Cn → Cn; s 7→ As. (2)

It is worth mentioning that the standard cyclic shift used for
finite time series is the graph shift on the directed circle graph.

Filters. The corresponding graph filters are linear, shift
invariant mappings given by polynomials in A of the form

H : Cn → Cn; s 7→
k∑
i=0

hiA
is. (3)

The matrix associated with H is
∑k
i=0 hiA

i, which implies
shift-invariance: H(As) = AH(s). The set of all such fil-
ters is closed under polynomial addition and multiplication
and thus forms an algebra A. The filter algebra A is isomor-
phic to the polynomial algebra C[x]/mA(x), where mA(x)
denotes the minimal polynomial of A. We write the minimal
polynomial of A as mA(x) =

∏k
i=1(x − λi)

di , where the
λi denote A’s distinct eigenvalues and the di the associated
lengths of their longest Jordan chains.

Example 1. The graph with adjacency matrix A in Fig. 1a
has the minimal polynomial x3(x+

√
2)(x−

√
2).

Fourier transform. Let J = FAF−1 be the Jordan nor-
mal form (JNF) ofA. Then F is the Fourier transform that de-
composes the signal space Cn into a direct sum of the smallest
subspaces that are invariant under the shift and thus all filters:

F : Cn →
k⊕
i=1

gi⊕
j=1

Sij ; s 7→ F s.



0 0 2 0 0 1 0
1 0 1 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 1 0 0 1 1
0 0 0 0 0 0 0
1 0 1 0 0 1 0


(a) A



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 −
√
2 0

0 0 0 0 0 0
√
2


(b) J = FAF−1
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(c) AD = p(A)

Fig. 1: (a) The adjacency matrix of our example, (b) the asso-
ciated Jordan normal form of A, and (c) an associated diago-
nalizable shift derived in this paper.

Each Sij denotes the subspace of Cn spanned by the Jordan
chain corresponding to the j-th eigenvector for the i-th eigen-
value λi. The geometric multiplicity gi is the number of such
chains, i.e., the dimension of the eigenspace for λi. Invariance
means that for s ∈ Sij and H ∈ A, we have Hs ∈ Sij .

Frequency response. The frequency response of a fil-
ter H = h(A) captures its action on the pure frequencies (=
columns of F−1). Thus, it is given by

FHF−1 = h(J). (4)

Example 2. The frequency response of the graph shift A in
Fig. 1a) is given by its JNF in Fig. 1b.

3. DIAGONALIZABLE DIGRAPH FILTERS

In this section we present our main contribution. For a given
digraph shift A, we constructively derive an associated diag-
onalizable shift AD. The new shift AD is a polynomial in A
(i.e., a filter) and generates the algebra of all diagonalizable
filters. Further, as we see later in the experiments, if AD is
again interpreted as graph, it often differs from A by only a
small number of edges.

3.1. Diagonalizable Digraph Shift

We use the Jordan-Chevalley decomposition of algebras [19,
20] imported to the GSP setting, i.e., algebras of the form
C[x]/mA(x) generated by a matrix A.

Theorem 1. (Jordan-Chevalley Decomposition) A matrix
A ∈ Cn×n can be uniquely decomposed into the sum of two
matrices A = AD + AN , with AD and AN ∈ Cn×n, that
satisfy the following properties:

1. AD is diagonalizable,
2. AN is nilpotent (i.e., a suitable power is 0),
3. AD and AN commute, i.e., ADAN = ANAD,
4. AD and AN are polynomials in A, i.e., AD = p(A)

and AN = A− p(A).

To prove Theorem 1, we need the following lemma about
the frequency response on a single Jordan subspace Sij . The
lemma was already used implicitly in [4, App. B & C].
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(b) AD = A−AN

Fig. 2: (a) Directed graph with adjacency matrix A in Fig. 1a,
(b) the graph corresponding to the diagonalizable AD. Edges
with weights 6= 1 are labelled, new edges are red.

Lemma 1. (Polynomial of Jordan block) Let Jd(λ) be a
Jordan block of size d for eigenvalue λ. The polynomial
h ∈ C[x]/mA(x) evaluated at Jd(λ) takes the form

h(Jd(λ)) =


h(λ) h(1)(λ)

1! · · · h(d−1)(λ)
(d−1)!

0 h(λ) · · · h(d−2)(λ)
(d−2)!

...
...

. . .
...

0 0 · · · h(λ)

 .

Proof. The result is obtained by considering monomials
h(x) = xi, 0 ≤ i < deg(mA) and adding the results.

Proof of Theorem 1. The existence of the desired decomposi-
tion ofA = AD+AN follows fromFAF−1 = J = JD+JN ,
where JD contains all diagonal elements of J and JN the off-
diagonal elements. Since p(A) = F−1p(J)F , we can apply
Lemma 1 to each Jordan block to characterize the polynomial
p ∈ C[x]/mA(x) with p(A) = AD as the unique solution to
the Hermite interpolation problem [21, p. 120]

p(λi) = λi, p
(1)(λi) = 0, . . . , p(di−1)(λi) = 0, (5)

for i ∈ {1, . . . , k}, in which λi denotes the i-th eigen-
value of A and di the size of its largest Jordan block. Thus,
AD = p(A), AN = A− p(A) and ADAN = ANAD.

Note that the computation of the diagonalizable shift
AD = p(A) using Hermite interpolation only requires infor-
mation about the minimal polynomial mA of A.

Example 3. For our running example, A in Fig. 1a, p(x) =
1
2x

3, and AD is given in Fig. 1c. The graphs associated with
A and AD are shown in Fig. 2. AD has additional edges
shown in red.

The characteristic polynomial χA(x) = det(A−xI) ofA
may be easier to compute than the minimal polynomial (e.g.,
in Matlab). Thus, we provide an alternative construction of
AD that we used in our experiments.

Lemma 2. Let p ∈ C[x]/mA(x) be the solution of (5) and
p̃ ∈ C[x]/χA(x) be the solution of the Hermite interpolation
problem

p̃(λi) = λi, p̃
(1)(λi) = 0, . . . , p̃(ai−1)(λi) = 0, (6)

for i ∈ {1, . . . , k}, in which ai is the multiplicity of λi in χA.
Then, p̃(x) ≡ p(x) mod mA(x).

Proof. By considering the Taylor expansion of p̃ at λi, mod-
ulo (x− λi)di , and applying (6) and (5) we obtain

p̃(x) ≡ p̃(λi) +
di−1∑
l=1

p̃(l)(λi)

l!
(x− λi)l

≡ p(λi) +
di−1∑
l=1

p(l)(λi)

l!
(x− λi)l ≡ p(x)

(7)

Repeating this argument for all i ∈ {1, . . . , k} and apply-
ing the Chinese remainder theorem yields the result.

An alternative algorithm for the computation of the
Jordan-Chevalley decomposition is proposed by [22].

Example 4. Solving (6) for our running example (Fig. 1)
yields p̃(x) = 1

4x
5 ≡ 1

2x
3 = p(x) mod x3(x2 − 2). Thus,

p̃(A) = p(A).

3.2. Properties of the Diagonalizable Shift

We summarize important properties of AD. In particular, we
show that AD generates all diagonalizable filters.

Theorem 2. (Properties of AD) Let AD be the diagonal-
izable shift associated with A, given by Theorem 1, let
D ∼= C[x]/mAD

(x) denote the polynomial algebra of fil-
ters generated by AD, and, let FAF−1 = J be the JNF of A.
Then, the following statements about AD hold:

P1. FADF−1 is the diagonal part JD of J ,
P2. mAD

(x) = (x− λ1) · · · (x− λk) and
P3. D = {H ∈ A : FHF−1 is diagonal}.

Proof. P1 holds by construction (see Theorem 1), and P2 fol-
lows frommAD

(AD) = FmAD
(JD)F

−1 combined with P1.
It remains to prove P3: Obviously, each filter in D has a

diagonal frequency response. Thus, we only need to show that
each polynomial h ∈ C[x]/mA(x) with diagonal frequency
response h(J) is an element of C[x]/mAD

(x) ∼= D. The
mapping from a filter to its frequency response h 7→ h(J)
is a isomorphism, therefore, it suffices to show the existence
of a polynomial r ∈ C[x]/mAD

(x) with r(λi) = h(λi), for
i ∈ {1, . . . , k}. We have deg(r) ≤ k−1, thus, r is the unique
Lagrange interpolant for the k constraints [21, p. 119].

In particular, P3 means that, for an element of a Jordan
subspace s ∈ Sij and a filter H = h(AD) ∈ D, we have
Hs = h(λi)s. In [8] such filters are referred to as alias-free.

4. EXPERIMENTS

We compute and compare AD to A for several synthetic and
real-world graphs. The basis question is how AD, again in-
terpreted as graph differs from the original graph given by A.



(a) Erdös-Renyi (b) Pagerank (c) Barabasi-Albert (d) Stanford’s web (e) Wiki-Vote (f) Arxiv HEP-PH

Fig. 3: The first row contains a selection of adjacency matrices, i.e., graph shifts, A. The second row the associated diagonaliz-
able shifts AD, again interpreted as graphs. Entries in AD (i.e., edges) that are not present in A are shown in red. Weights are
not shown. (a–c) are synthetic graphs, (d–f) are sub-graphs of real-world graphs.

This comparison is done in Fig. 3 for various graphs. In each
case, entries (i.e., edges) in AD not present in A are marked
red. Weights in AD are not shown.

Synthetic Graphs. We consider the following graph
models:

Erdös-Renyi: In Erdös-Renyi random graphs [23] each
edge is sampled independently with equal probability. For
|V | = 60 and an edge creation probability of 0.07 about
half of the randomly generated graphs are not diagonalizable.
Fig. 3a shows one example where A has one Jordan block of
size 3, four of size 2, and the rest of size 1.

Pagerank: Pagerank graphs [24] were used by Google to
obtain rankings of websites. Each website is a vertex and
there is a weighted directed edge between two vertices if there
is a non-zero probability of users transitioning from the start
site to the target site. Fig. 3b shows one example with nine
Jordan blocks of size 2 and the rest of size 1.

Barabasi-Albert: The Barabasi-Albert random graph
model [25] generates scale-free graphs that mimic social net-
works. This is achieved by successively growing a graph,
where new nodes are more likely to connect to old nodes of
high degree. For |V | = 60 and typical parameters [25], e.g.,
m0 = 5,m = 5 or m0 = 10,m = 6, these graphs are almost
never diagonalizable. Fig. 3c shows one example with one
Jordan block of size 9, one of size 4, two of size 3, two of
size 2 and the rest of size 1.

Real-world Graphs. We consider the subgraphs corre-
sponding to the first 60 vertices of graphs from the SNAP
dataset [1].

Wikipedia adminship: In the Wikipedia adminship graph,
users are represented as vertices. Users can vote for other
users to become admin, these votes are modeled as directed
edges. The subgraph in Fig. 3e has one Jordan block of size
4, three of size 2 and the rest of size 1.

Stanford web: In the Stanford web graph vertices repre-
sent pages from stanford.edu and directed edges represent hy-
perlinks between them. The subgraph in Fig. 3d has one Jor-
dan block of size 3, four of size 2, and the rest of size 1.

Arxiv citations: We consider the the Arxiv-HEP-PH
graph, which contains high energy physics phenomenology
papers as vertices. Directed edges correspond to citations.
The subgraph in Fig. 3f has two Jordan blocks of size 10, one
of size 6, two of size 4, one of size 3, four of size 2 and the
rest of size 1.

Summary. We observe that AD, if again interpreted as
graph, modifies a number of edges in A. This number de-
pends on the amount and size of the nontrivial Jordan blocks
of A and is often relatively small (except for Fig. 3c). This
observation is intuitive as AD = A if all Jordan blocks are of
size 1, and, the larger the blocks, the larger is the impact of
the nilpotent part AN .

5. CONCLUSION

The basic question underlying our work is how to have an
operational GSP framework for digraphs in the case that the
adjacency matrix A is not diagonalizable. Our solution used
the Jordan-Chevalley decomposition to compute a diagonal-
izable AD associated with A. Since AD is a polynomial in A
we stay within the framework of [4]. Further, our experiments
suggested thatAD, if again interpreted as graph, is sometimes
even similar to A, i.e., relatively few edges get modified. The
idea now is to replace GSP with A by GSP with AD. To
show its viability several challenges remain including more
exhaustive testing on graphs, scaling the computation of AD
to large graphs in a numerical stable way, and comparing ex-
isting GSP applications when run with AD as shift instead
of A.
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