
A DISCRETE SIGNAL PROCESSING FRAMEWORK FOR SET FUNCTIONS

Markus Püschel

Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT

A set function associates a real (or complex) value with every subset
of a given finite set S. In this paper, we derive a novel discrete sig-
nal processing (DSP) framework for such functions. This means we
define and derive suitable notions of basic DSP concepts including
shift, filtering, frequency response, Fourier transform, and convo-
lution theorems. At the heart is the definition of the shift on sub-
sets for which we consider the two most natural choices, i.e., those
most analogous to the time shift in standard DSP. Set functions na-
turally occur in many contexts associated with probability distribu-
tions, graph cuts, sensor placements, mutual information, entropy of
sets of random variables, and others. Our work offers a new set of
tools for their processing.

Index Terms— Algebraic signal processing, convolutions on
sets, submodular function, Fourier transform, Boolean function

1. INTRODUCTION

The foundation of signal processing rests on a well-developed theory
of time-invariant systems that provides well-defined mathematical
notions of signals, filters, z-transform, time- and frequency domain,
Fourier transform, convolution theorems, and others. These con-
cepts take different forms for continuous and discrete, infinite and
finite (periodically extended) signals [1]. Central in time signal pro-
cessing is the notion of the time shift as all other concepts can be de-
rived from it. For example, in the discrete case, filters are just linear
combinations of k-fold shifts, and the Fourier transform yields an
eigendecomposition of filters. Further, it is possible to define shift-
invariant signal processing frameworks for shifts other than the time
shift [2]. For example, a symmetric definition of the shift yields the
discrete cosine and sine transforms (or generalization of them) as
Fourier transforms [3, 4], and a graph-shift, on a given graph, can
be used to derive a discrete signal processing (DSP) framework on
graphs [5, 6, 7].

Contributions. In this paper we derive a novel discrete signal
processing framework for set functions, i.e., functions, or signals,
defined on the power set 2S of given a finite set S. Such signals
thus have the form s = (sA)A⊆S , where sA ∈ R or ∈ C. We first
define a set transform, in analogy to the z-transform

∑
skz
−k, that

maps s to the formal sum
∑

A⊆S sAA. Then we define two natural
notions of shift on these sums in closest analogy to the time shift.
From these definitions we derive all basic signal processing con-
cepts, including the associated notions of shift-invariance, filtering,
frequency response, Fourier transform, and convolution theorem.

Related work. Set functions naturally occur in many applica-
tions as probability distributions, entropy or mutual information of
sets of random variables, graph cut capacity functions (see [8] for
these and other examples). Equivalently, subsets of S can be viewed

as Boolean vectors of length |S| (recording for every element whet-
her it is contained or not) and thus set functions as mappings on those
vectors. The study of these is a classical topic (see the survey [9])
that uses the Walsh-Hadamard transform (WHT) as associated Fou-
rier transform, which has many applications in signal processing and
beyond [10, 11, 12, 13]). We will clearly distinguish from this line
of work through the underlying shift operator, for which we arguably
adopt a more natural choice, and on which we base our derivation.
At the end of the paper will make this distinction precise.

Mathematically closest to our work is, in a very different context
and with different goals, [14, 15] in theoretical computer science
and [16] in game theory, which consider different convolutions on
set functions but do not derive the associated DSP framework. Our
work is based on the algebraic signal processing framework started
in [2, 6].

2. FINITE-TIME DSP

In this section we provide well-known background on the key con-
cepts needed for discrete signal processing (DSP) with finite-time
(and periodically extended) signals [1]. These concepts include
the notion of z-transform, filtering, frequency response and Fourier
transform. Important for this paper is the way we structure the ma-
terial, since we will follow the same structure later to derive proper
forms of these concepts for DSP with set functions.

Signal. A complex, discrete finite-time signal of length n is
given by s = (s0, . . . , sn−1)T ∈ Cn. It can be viewed as a function
that maps time point i to the associated signal value si. Further, it
is assumed to be periodically extended, i.e., for any N ∈ Z, sN =
sN mod n. Equivalently, if N = kn+ r, 0 ≤ r < n, then sN = sr .

z-transform. For notational convenience, we write x = z−1.
The z-transform associates s with the polynomial s = s(x) =∑

0≤i<n six
i. To capture the periodic extension, we further have

to require that for N ∈ Z, xN = xN mod n, or, if N = kn + r as
above, xr = xkn+r = (xn)kxr for all k ∈ Z, 0 ≤ r < n, which
is the same as requiring xn = 1 or xn − 1 = 0. In other words, the
polynomial s is considered modulo xn− 1. The set of these polyno-
mials is written as C[x]/(xn−1) and is called a polynomial algebra.
In summary, the finite z-transform is the mapping

Φ : Cn → C[x]/(xn − 1), s 7→ s = s(x) =
∑

0≤i<n

six
i. (1)

The polynomial algebra view is known at least since [17].
Shift. Central in time DSP is the time shift, which, in the z-

domain, is a multiplication by x:

x · s = s0x
1 + s1x

2 + · · ·+ sn−2x
n−1 + sn−1x

n (2)
≡ sn−1x

0 + s0x
1 + · · ·+ sn−2x

n−1 mod xn − 1,

4359978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

where we reduced xn modulo xn − 1 to 1. The effect on s is, as
expected, the cyclic shift

x · s = x
∑

0≤i<n

six
i =

∑
0≤i<n

si−1 mod nx
i. (3)

Note that the shift x advances the xi (since x · xi = xi+1), which
delays the signal values si (up to the cyclic wraparound).

The shift be expressed as a matrix by letting x operate on the
basis (1, x, . . . xn−1):

φ(x) =


1

1
. . .

1

 ,
such that x · s corresponds to the matrix-vector product φ(x)s.

k-fold shift. The k-fold shift of s is simply given by x ·x · · ·x ·
s = xk · s, which (cyclically) delays the signal s by k. Its matrix
representation is φ(xk) = φ(x)k.

Filter and convolution. A filter given by h = (h0, . . . , hn−1)
is a linear combination of k-fold shifts, i.e., in the z-domain h =∑

0≤i<n hix
i. Filtering is multiplication in C[x]/(xn − 1):

hs =
(∑

0≤i<n

hix
i
)(∑

0≤i<n

six
i
)

mod (xn − 1).

The reduction modulo xn − 1 ensures that the polynomial is again
of degree n − 1 and yields the circular convolution h ~ s on the
values, as expected. Again, h can be expressed as a matrix which
has circulant structure:

φ(h) =
∑

0≤i<n

hiφ(x)i =


h0 hn−1 . . . h1

h1 h0 . . . h2

...
. . .

. . .
hn−1 hn−2 . . . h0

 . (4)

In summary: hs⇔ h ~ s⇔ φ(h)s.
Shift-invariance. With the above definitions, shift-invariance

holds for every filter, i.e., for all h, s,

h(xs) = x(hs) or φ(h)(φ(x)s) = φ(x)(φ(h)s). (5)

Fourier transform and frequency response. The associated
Fourier transform is the discrete Fourier transform (DFT) and defi-
ned (up to scaling) by the matrix that diagonalizes φ(x) and thus all
φ(h):

DFTn = [ωk`
n]0≤k,`<n, ωn = exp(−2πj/n).

Namely,

DFTn φ(h) DFT−1
n = diag(h(ω0

n), . . . h(ωn−1
n)).

The columns fi (sometimes called pure frequencies) of DFT−1
n are

the eigenvectors of all φ(h) and their eigenvalues h(ωi
n) constitute

the frequency response of h:

φ(h)fi = h(ωi
n)fi.

This yields the convolution theorem (� is the pointwise product)

h ~ s ⇔ diag(h(ω0
n), . . . h(ωn−1

n)(DFTn s)
= (DFTn h)� (DFTn s).

3. DSP ON SET FUNCTIONS: NATURAL SHIFT

Note the central role of the shift in the previous section: it defined
filtering and the Fourier transform and thus the entire DSP frame-
work. Thus the key in this section is to define a suitable shift for set
functions and follow the same steps to instantiate all basic concepts
needed for DSP on set functions.

Signal. We consider a finite set S = {x1, . . . , xn} of size
|S| = n, and its power set, i.e., set of all subsets, usually denoted
with 2S .1 A set function associates with each subset A ⊆ S a value
sA ∈ R (choosing C instead makes no major difference in the follo-
wing). This means our signals have the form s = (sA)A⊆S ∈ R2S ,
i.e., the power set becomes our index domain. Each s thus has length
2n. Further, we order the subsets, and thus the components of s lexi-
cographically as the Cartesian product ({}, {xn})×· · ·×({}, {x1}).
For example, for n = 3 this yields the ordering

{}, {x1}, {x2}, {x1, x2}, {x3}, {x1, x3}, {x2, x3}, {x1, x2, x3}
(6)

S-transform. We first formally define an S-transform (or set
transform) as follows:

Φ : R2S → R[2S], s→ s =
∑
A⊆S

sAA. (7)

Here, we denote with R[2S] the set of the formal sums shown. Note
that in contrast to (1), where we obtained polynomials, we do not yet
know how to compute with these sums. As we will see, by defining
the shift we also define the computation with the sums2 and thus the
associated convolution and Fourier transform. Different notions of
shift are possible and we consider the two most natural choices.

Shift. The time shift x in (2) advanced the xi. As closest ana-
logue, we define what we call the natural shift for set functions. Na-
mely, for every xi ∈ S we define a shift

xi ·A = A ∪ {xi}, for A ⊆ S. (8)

There are three differences to the time shift. First, there is not one,
but n shifts. However, this also occurs in higher-dimensional DSP,
where there is one shift for each dimension, and the Fourier trans-
form is higher-dimensional (done separably) and diagonalizes all
shifts. Second, since (8) implies x2i = xi, powers of shifts as in
the time case will not occur. Third, the shifts are not invertible. Note
that (8) implies that shifts commute, i.e., for all i 6= j and A ⊆ S,
xixjA = xjxiA.

By linearly extending the shift (8) to operate on signals s in the
S-domain (7), we get

xi · s =
∑
A⊆S

sA(A ∪ {xi}) =
∑

A⊆S,xi∈A

(sA + sA\{xi})A. (9)

The second sum is obtained by recognizing that the first sum only
contains summands for sets that contain xi and doing the variable
substitutionA∪{xi} → A. So the effect on the sA is not the “delay”
sA\{xi} in analogy to time DSP, but sA + sA\{xi} for xi ∈ A and 0
else. To get the associated matrix representation of the shift, we let it
operate on the basis, i.e., all sets (A | A ⊆ S) taking their ordering

1As we will see later, the xi will play an analogous role as x (and its
powers) in the previous section.

2Mathematically, R[2S] becomes a so-called monoid ring [18] by making
the set of subsets a monoid, i.e., a set with an associative operation with unit
element. The monoid in time DSP (Section 2) was the set {x0, . . . , xn−1}
with multiplication modulo xn − 1.

4360

into account. As an example let n = 3 and consider the shift x1.
Operating on (6) as defined in (8) yields the matrix

φ(x1) =


0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1

 = I4 ⊗ [0 0
1 1] ,

where Im is them×m identity matrix and⊗ denotes the Kronecker
product of matrices defined by U ⊗ V = [uk,`B], for U = [uk,`],
i.e., every entry of U is multiplied by the entire matrix V . In general,

φ(xi) = (I2n−i ⊗ [0 0
1 1]⊗ I2i−1). (10)

X-fold shift. To obtain a notion of filtering or convolution we
need to define a proper notion of X-fold shift for any X ⊆ S.
This is done by shifting in sequence with all x ∈ X: if X =
{xi1 , . . . , xik}, then

X · s = xi1(xi2(. . . (xik−1(xik · s)) . . .)). (11)

Note that this is well-defined since all the shifts commute and thus
the order of shifting does not matter. For X = {}, X · s = s. In
particular, XA = A ∪X and thus

X · s =
∑
A⊆S

sA(A ∪X) =
∑

X⊆A⊆S

(
∑

A\X⊆B⊆A

sB)A. (12)

The last expression is obtained by first observing that in the first
sum only sets containing X appear. Thus, for the last sum, we set
A = A ∪ X and for each such A collect all B with B ∪ X = A.
The matrix representation of X is

φ(X) =

k∏
j=1

φ(xij). (13)

Filter and convolution. A filter is a linear combination of X-
fold shifts, i.e., in the S-domain takes the form h =

∑
X⊆S hXX .

Filtering is multiplication in R[2S],

hs =
(∑

X⊆S

hXX
)(∑

A⊆S

sAA),

which can be computed by applying the distributivity law on h and
calculating Xs as in (12) resulting in

hs =
∑
A⊆S

(∑
B∪C=A

hBsC
)
A,

which defines the associated convolution (sometimes called the co-
vering product [14])

h4s =
∑

B∪C=A

hBsC .

The matrix representation of h is φ(h) =
∑

X⊆S hXφ(X). As an
example, we consider n = 3 and the filter h = a{} + b{x2} +
c{x1, x3}+ d{x1, x2, x3}, a, b, c, d ∈ R. Using (10) and (13),

φ(h) = aI8 + b(I2 ⊗ [0 0
1 1]⊗ I2) + c(I4 ⊗ [0 0

1 1])([0 0
1 1]⊗ I4)

+d(I4 ⊗ [0 0
1 1])(I2 ⊗ [0 0

1 1]⊗ I2)([0 0
1 1]⊗ I4)

=


a

a
b a + b

b a + b
a

c c c a + c
b a + b

d d c + d c + d d b + d c + d a + b + c + d


Shift-invariance. Since set union is commutative, every shift xi

commutes with every X-fold shift and thus with every filter h. This
means every filter is shift-invariant, i.e., for 1 ≤ i ≤ n, and all h, s,

h(xis) = xi(hs) or φ(h)(φ(xi)s) = φ(xi)(φ(h)s) (14)

Fourier transform and frequency response. To derive the
Fourier transform we need to diagonalize all shifts φ(xi). Note that
this can be done with one matrix since all the φ(xi) commute, a con-
sequence of (14), and easily seen from (10), using that if matrices
U,U ′ have the same dimensions and V, V ′ have the same dimensi-
ons, then (U ⊗ V)(U ′ ⊗ V ′) = (UU ′ ⊗ V V ′). Because of the
special structure in (10), the problem reduces to diagonalizing [0 0

1 1].
Since[

0 1
1 −1

]−1
[0 0
1 1]

[
0 1
1 −1

]
= [1 1

1 0] [0 0
1 1] [1 1

1 0]
−1

= [1 0
0 0] , (15)

the discrete set Fourier transform is given by the matrix

DSFT2n = [1 1
1 0]⊗ . . .⊗ [1 1

1 0] ,

and the pure frequencies (eigenvectors of all filters) are the columns
of the matrix

DSFT−1
2n =

[
0 1
1 −1

]
⊗ . . .⊗

[
0 1
1 −1

]
.

The columns of the latter are signals, i.e., naturally indexed with
A ⊆ S in our defined order. Now we also index the columns with
B ⊆ S in the same order, and thus write 2S instead of 2n. We then
observe (proof by induction) that

DSFT2S = [eA,B]A,B⊆S , eA,B =

{
1 if A ∩B = {}
0 else

DSFT−1
2S

= [fA,B]A,B⊆S , fA,B =

{
(−1)|A∩B| if A ∪B = S

0 else

which gives a closed form for the pure frequencies. To confirm this,
and also compute the frequency response, let B be fixed, and con-
sider the Bth frequency fB =

∑
A⊆S fA,BA, and let x ∈ N be a

shift. Then

xfB =
∑

A⊆S,A∪B=S

(−1)|A∩B|(A ∪ {x}).

If x 6∈ B, then x is contained in every occuring A and thus xfB =
fB . If x ∈ B, then every A ∪ {x} occurs twice. Once for a valid
A (i.e., A ∪ B = S) without x and once for the same A joined
with x. The intersection of these with B differs in size by one and
thus the associated summands cancel yielding xfB = 0. So the
frequency response of the shift x at the Bth frequency is either 1 or
0, as expected from the last matrix in (15).

Extending to a shift by X ⊆ S, using (11), yields

XfB =

{
fB if X ∩B = {}
0 else

and thus, by linear extension, we can compute the frequency re-

4361

sponse of an arbitrary filter h at frequency B through

hfB =
(∑
X⊆S

hXX
)
fB =

(∑
X⊆S,X∩B={}

hX

)
fB .

This shows that the frequency response is also computed with the
DSFT and yields the convolution theorem, which can also be found
in [14]

h4s ⇔ (DSFTn h)� (DSFTn s).

Note that the DSFT can be computed with exactly n2n−1 additions.

4. DSP ON SET FUNCTION: NATURAL “DELAY”

In Section 3 we based our derivation on the shift xi ·A = A∪{xi} in
(8) which mimics the multiplication x ·xk = xk+1 in time DSP. The
effect on the signal (sA)a⊆S was shown in (9). Unlike in time DSP,
it was not a “clean delay,” which one might expect to take the form
(sA\{xi})A⊆S . The question is whether there is a definition of shift
that would yield this “delay.” The answer is yes, and we define it
next. Then we go through the steps as before to derive all other basic
concepts. Due to space limitations we will be briefer than before.
The notions of signal and set transform are as before and filters are
again shift-invariant.

Shift. For xi ∈ S we define a shift as

xi ·A =

{
A+A ∪ {xi} xi 6∈ A
0 else

(16)

As before, we extend linearly to signals s and compute

x · s =
∑

A⊆S,xi 6∈A

sA(A+A ∪ {xi})

=
∑

A⊆S,xi 6∈A

sAA+
∑

A⊆S,xi∈A

sA\{xi}A

=
∑
A⊆S

sA\{xi}A.

For the second equality we split the sum and set A = A ∪ {xi} in
the second sum. For the third equality we used that for xi 6∈ A,
A \ {xi} = A.

The associated matrix representation of the shift now takes the
form

φ(xi) = I2n−i ⊗ [1 0
1 0]⊗ I2i−1 . (17)

The extension to an X-fold shift is done as in (11) and becomes

X · s =
∑
A⊆S

sA\XA.

Filters and convolution. Again we linearly extend the X-fold
shift to the operation of an arbitrary filter

∑
X⊆S hXX and obtain

hs =
∑
X⊆S

hX

(∑
A⊆S

sA\XA
)

=
∑
A⊆S

(∑
X⊆S

hXsA\X

)
A,

which defines the convolution

h . s =
∑
X⊆S

hXsA\X .

By construction, filtering is shift-invariant.

Fourier transform and frequency response. We need to dia-
gonalize all shift matrices in (17), i.e, diagonalize first [1 0

1 0]:

[1 0
1 1]
−1

[1 0
1 0] [1 0

1 1] =
[

1 0
−1 1

]
[1 0
1 0]

[
1 0
−1 1

]−1
= [1 0

0 0] .

Thus, the discrete set Fourier transform is now given by the matrix

DSFT′2n =
[

1 0
−1 1

]
⊗ . . .⊗

[
1 0
−1 1

]
,

which has a complexity of n2n−1 additions. The closed form for the
pure frequencies is given by

DSFT−1
2S

= [fA,B]A,B⊆S , fA,B =

{
1 if B ⊆ A
0 else

,

and this transform is known as Moebius transform [19, 20]. The
frequency response of a filter h is computed with the DSFTn as
before and thus we get the convolution theorem

h . s⇔ (DSFTn h)� (DSFT′n s).

5. DSP ON SET FUNCTIONS: INVERTIBLE SHIFT

Prior work (see the survey [9]) on Fourier analysis with set functions
was based on associating them with elements of the product of n cy-
clic groups of order 2 and obtaining the Walsh-Hadamard transform
as its Fourier transform. To clearly distinguish it form our work, we
very briefly present this framework analogous to the prior sections.
In short: the underlying shift definition is different.

Shift. Both prior shifts were arguably natural as they mimic
the time shift, but neither was invertible. An invertible shift can be
defined as

xi ·A = A \ {xi} ∪ {xi} \A =

{
A ∪ {xi}, xi 6∈ A
A \ {xi}, xi ∈ A

Filters and convolution. The X-fold shift then is the so-called
symmetric differenceX ·A = A\X ∪X \A and convolution takes
the form

h � s =
∑
X⊆S

hXsA\X∪X\A.

The matrix representation of the shift xi is

φ(xi) = I2n−i ⊗ [0 1
1 0]⊗ I2i−1 . (18)

Fourier transform. All shifts are now diagonalized by the (self-
inverse up to scaling) Walsh-Hadamard transform [10, 21]

WHT2n =
[
1 1
1 −1

]
⊗ . . .⊗

[
1 1
1 −1

]
= [(−1)|A∩B|]A,B⊆S .

6. CONCLUSIONS

We have derived a novel, mathematically meaningful, and arguably
natural, framework to do signal processing with set functions. The
derivation shows that there are choices associated with the shift de-
finition. We showed three (but more could be defined), where the
last captured prior knowledge about the Walsh-Hadamard transform
within our framework. With the basic theoretical foundation set, it
will be exciting to further extend it and explore real-world applica-
tions with the set functions occurring in signal processing, informa-
tion theory, and machine learning.

4362

7. REFERENCES

[1] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-
Time Signal Processing, Prentice Hall, 2nd edition, 1999.

[2] M. Püschel and J. M. F. Moura, “Algebraic signal processing
theory: Foundation and 1-D time,” IEEE Trans. on Signal Pro-
cessing, vol. 56, no. 8, pp. 3572–3585, 2008.

[3] M. Püschel and J. M. F. Moura, “Algebraic signal processing
theory: 1-D space,” IEEE Trans. on Signal Processing, vol. 56,
no. 8, pp. 3586–3599, 2008.

[4] A. Sandryhaila, J. Kovacevic, and M. Püschel, “Algebraic sig-
nal processing theory: 1-D nearest-neighbor models,” IEEE
Trans. on Signal Processing, vol. 60, no. 5, pp. 2247–2259,
2012.

[5] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs,” IEEE Trans. on Signal Processing, vol. 61, no. 7,
pp. 1644–1656, 2013.

[6] M. Püschel and J. M. F. Moura, “Algebraic
signal processing theory,” [Online]. Available:
http://arxiv.org/abs/cs.IT/0612077.

[7] M. Püschel and M. Rötteler, “Algebraic signal processing the-
ory: 2-D hexagonal spatial lattice,” IEEE Trans. on Image
Processing, vol. 16, no. 6, pp. 1506–1521, 2007.

[8] A. Krause and D. Golovin, Tractability: Practical Approaches
to Hard Problems, chapter Submodular function maximization,
pp. 71–104, Cambridge University Press, 2014.

[9] R. De Wolf, “A brief introduction to Fourier analysis on the
Boolean cube,” Theory of Computing Library-Graduate Sur-
veys, 2008.

[10] K.G. Beauchamp, Applications of Walsh and related functions,
Academic Press, 1984.

[11] J. Kahn, G. Kalai, and N. Linial, “The influence of variables on
boolean functions,” in Proc. Foundations of Computer Science
(FOCS), 1988, pp. 68–80.

[12] Y. Mansour, Theoretical Advances in Neural Computation and
Learning, chapter Learning Boolean Functions via the Fourier
Transform, pp. 391–424, Springer, 1994.

[13] P. Stobbe and A. Krause, “Learning fourier sparse set functi-
ons,” in Proc. International Conference on Arti
cial Intelligence and Statistics (AISTATS), 2012, pp. 1125–
1133.

[14] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, “Fourier
meets möbius: Fast subset convolution,” in Proc. Symposium
on Theory of Computing (STOC), 2007, pp. 67–74.

[15] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, J. Nederlof,
and P. Parviainen, “Fast zeta transforms for lattices with few
irreducibles,” ACM Trans. on Algorithms, vol. 12, no. 1, pp.
4:1–4:19, 2015.

[16] M. Grabisch, On Logical, Algebraic, and Probabilistic As-
pects of Fuzzy Set Theory, chapter Bases and transforms of set
functions, pp. 215–231, Springer, 2016.

[17] H. J. Nussbaumer and P. Quandalle, “Fast computation of dis-
crete Fourier transforms using polynomial transforms,” IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol.
ASSP-27, no. 2, pp. 169–181, 1979.

[18] S. Lang, Algebra, Graduate Texts in Mathematics. Springer,
3rd edition, 2002.

[19] G.-C. Rota, “On the foundations of combinatorial theory. I.
theory of Möbius functions,” Z. Wahrscheinlichkeitstheorie
und Verwandte Gebiete, vol. 2, no. 4, pp. 340–368, 1964.

[20] M. Aigner, Combinatorial Theory, Springer, 1979.

[21] J. L. Walsh, “A closed set of normal orthogonal functions,”
American Journal of Mathematics, vol. 45, no. 1, pp. 5–24,
1923.

4363

