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ABSTRACT

We present a novel sampling theorem, and prototypical applications,
for Fourier-sparse lattice signals, i.e., data indexed by a finite semi-
lattice. A semilattice is a partially ordered set endowed with a meet
(or join) operation that returns the greatest lower bound (smallest
upper bound) of two elements. Semilattices can be viewed as a spe-
cial class of directed graphs with a strictly triangular adjacency ma-
trix, which thus cannot be diagonalized. Our work does not build on
prior graph signal processing (GSP) frameworks but on the recently
introduced discrete-lattice signal processing (DLSP), which uses the
meet as shift operator to derive convolution and Fourier transform.
DLSP is fundamentally different from GSP in that it requires sev-
eral generating shifts that capture the partial-order- rather than the
adjacency-structure, and a diagonalizing Fourier transform is always
guaranteed by algebraic lattice theory. We apply and demonstrate
the utility of our novel sampling scheme in three real-world settings
from computational biology, document representation, and auction
design.

Index Terms— Lattice signal, sampling, Fourier transform,
meet, join, graph signal processing, algebraic signal processing

1. INTRODUCTION

The boom in big data processing and machine learning has created
interest in generalizing signal processing (SP) to data on irregular
domains. For example, traditional SP concepts such as convolutional
filters are the backbone of state-of-the-art learning models such as
convolutional neural networks and can be exchanged with their gen-
eralized counterparts [1, 2]. Generalized SP frameworks utilize the
available structure of irregular data domains to derive concepts such
as shifts, convolutions, Fourier transform and sampling/interpolation
operators. For instance, graph signal processing (GSP) based on the
Laplacian operator [3] utilizes results from algebraic graph theory to
formulate a spectral convolution, and [4] proposes the adjacency ma-
trix as shift operator and uses the algebraic signal processing (ASP)
framework [5, 6] to derive convolution and Fourier transform.

Recently we used ASP to derive a novel SP framework, called
discrete-lattice SP (DLSP), for signals indexed by finite lattices, or,
more precisely, meet or join semilattices [7]. A semilattice is a par-
tially ordered set L equipped with a meet (or join) operation. A
meet maps a pair of lattice elements a, b ∈ L to the largest element
smaller than both a and b. For example, the powerset of a finite set
ordered by inclusion and with the intersection as meet is a semilat-
tice. In DLSP, the meet defines shift and convolution and results
from algebraic lattice theory [8] guarantee and provide an associated
Fourier transform.

DLSP can be viewed as a form of GSP for a special class of
graphs, all of which have a strictly triangular adjacency matrix (after

suitable ordering of vertices), which thus cannot be diagonalized. It
is fundamentally different from GSP in that there is not one gener-
ating shift (such as, e.g., the adjacency matrix) but several, and they
do not always operate among neighbors but in a way that captures
the partial order structure of the domain.

Contributions. In this work we expand DLSP by investigat-
ing sampling. By instantiating classical sampling theory [9] we first
derive a sampling theorem for signals that are sparse in the Fourier
domain, similar as done in [10] for GSP. We then apply the results
to three different types of lattice signals occurring in computational
biology, text processing, and auction design. In each case the signals
are exactly or approximately Fourier-sparse which enables sampling
or compression.

In summary, our main contributions are as follows:

• We provide a novel sampling theorem associated with DLSP
that enables the perfect reconstruction of (lattice-)Fourier k-
sparse signals from k samples.

• We apply the result to real-world lattice signals in three differ-
ent settings1: genotype-phenotype mappings [11], document
representation based on prefix occurrence counts and prefer-
ence elicitation schemes for combinatorial auctions [12].

Related work. Our work extends the lattice signal processing
framework introduced in [7], which reinterprets results from alge-
braic lattice theory [8] through the lens of algebraic signal processing
theory [5]. Lattice signal processing is a generalization of the signal
processing framework for set functions proposed in [13]. The pro-
posed sampling theorem draws inspiration from the sampling theory
of graph signals [10], in which classical sampling theory is instanti-
ated for GSP [4].

GSP can be broadly categorized into Laplacian-based GSP [3]
and adjacency-based GSP [4]. Both frameworks do not straightfor-
wardly apply to directed graphs (digraphs). The Laplacian operator
used in [3] is not defined for digraphs and adjacency-based Fourier
analysis [4] requires the Jordan decomposition of the adjacency ma-
trix in this case. Reference [14] circumvents this problem by in-
troducing a digraph Fourier basis that is minimal w.r.t. a (relaxed)
digraph total variation. In contrast, DLSP [7] yields a different no-
tion of Fourier transform for a special class of digraphs with strictly
triangular adjacency matrices.

Lattice signals occur in various research fields, such as simpli-
cial complexes [15, 16, 17], hypergraphs [18, 19], set functions [20,
21, 22, 23], natural language processing [24], genetics and molec-
ular biology [11, 25, 26]. Further, several well known lattices like
formal concept-, permutation- or partition lattices [27, 28, 29] might
be associated with signals, e.g., statistics or fitness criteria.

1Sample implementation: https://github.com/chrislybaer/dlsp-sampling
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Fig. 1: Meet-semilattice L, example lattice signal s, lattice Fourier
transform F , and ŝ. The rows and columns of F are indexed by the
lattice elements in alphabetical order.

2. BACKGROUND

In this section we provide background on the signal processing
framework for lattice signals introduced in [7].

2.1. Lattice theory

We first introduce needed key concepts from lattice theory. For a
more complete introduction see [8].

Lattices. We consider finite sets L. L is partially ordered if
it permits a binary relation ≤ that satisfies for all a, b, c ∈ L the
following properties: (1) reflexivity: a ≤ a, (2) anti-symmetry: a ≤
b and b ≤ a implies a = b, and (3) transitivity: a ≤ b and b ≤ c
implies a ≤ c. We write a < b if a ≤ b and a 6= b.

A meet-semilattice is a partially ordered set L in which every
pair a, b ∈ L has a unique greatest lower bound a ∧ b. This means,
a ∧ b ≤ a, a ∧ b ≤ b and every c with c ≤ a and c ≤ b satisfies
c ≤ a ∧ b. The meet operation ∧ will allow us to define a shift
operation for lattice signals later.

An element c ∈ L is called meet-irreducible if it cannot be writ-
ten as the meet of two other elements, i.e., for all a, b ∈ L \ {c} we
have c 6= a ∧ b.

An element b ∈ L is said to cover a ∈ L iff a < b and there is
no c ∈ L in between, i.e., with a < c < b.

Visualization. A meet-semilattice can be visualized by a di-
rected graph G = (L,E) capturing the cover-relation. Formally,
E = {(b, a) | b covers a}. The graph is typically drawn such that
smaller elements are below larger ones. The meet ∧ of two vertices
a, b ∈ L can then be visually determined. Not every directed graph
defines a lattice (e.g., the directed circle does not).

Examples. Fig. 1a depicts the graph for an example lattice with
meet-irreducible elements c, e, f, g, h. InL, e.g., e∧f = b, e∧b = b
and b ∧ g = a.

Another example of a meet-semilattice is the powerset of a fi-
nite set N = {x1, . . . , xn} with the partial order ⊆ and ∧ = ∩
(intersection).

Finally, we note that analogously one can consider in the above
a join operation ∨ that returns the smallest upper bound.

2.2. Discrete Lattice Signal Processing

Discrete lattice signal processing (DLSP) [7] provides basic SP con-
cepts including convolution and Fourier transform for signals in-
dexed by lattices. The key idea is to use the meet operation to define
a shift operation and then derive all SP concepts as explained in [5].
For simplicity, we refer to meet-semilattices simply as lattices.

Lattice signal. A lattice signal maps each lattice element to a
real number s : L → R : a 7→ sa and can be represented by
the |L|-dimensional vector s = (sa)a∈L. We order the entries of s
topologically sorted, i.e., larger indices come after smaller ones. In

Fig. 1a the alphabetic order achieves this. Accordingly, the signal in
Fig. 1b is ordered as s = (2, 1, 2, 5, 1, 8, 5, 8)T .

Lattice shift. The algebraic signal processing theory [5] shows
that all basic SP concepts can be derived from a suitable notion of
shift operation. In DLSP, the shift definition is obtained from the
meet operation. Formally, for q ∈ L, the associated shift by q is
defined by the linear mapping Tq

Tqs = (sa∧q)a∈L. (1)

All possible lattice shifts are generated by those with meet-irreducible
elements of L. Note that this contrasts with standard discrete-time
SP and graph SP, in which there is one generating shift of which
the others are polynomials. Also note that the shift operation on the
lattice graph operates differently than the graph shift.

Convolution. The associated notion of convolution consists of
linear shift-invariant mappings. These correspond to lattice filters h
operating as

h ∗ s =
(∑
q∈L

hqsa∧q
)
a∈L

. (2)

Shift invariance (i.e., for all q ∈ L we have h ∗ Tqs = Tq(h ∗ s))
follows from the commutativity of the meet operation.

Fourier transform. The Fourier transform ŝ = F s provides an
eigendecomposition w.r.t. all filters, or equivalently, diagonalizes all
shifts Tq . Lattice theory [7, 8] guarantees existence and the exact
form as F = (µ(x, y))y,x∈L, where µ denotes the Möbius function
that can be computed recursively [30, 31]:

µ(x, x) = 1 for x ∈ L

µ(x, y) = −
∑

x≤z<y

µ(x, z) else. (3)

The inverse of F is F−1 = (ιy≤x)x,y∈L, with ιy≤x = 1 if y ≤ x
and ιy≤x = 0 otherwise. Its columns are the eigenvectors (pure fre-
quencies) of all filters. Fig. 1c shows F for the lattice in Fig. 1a. Due
to the ordering, F is always lower triangular and thus not orthogonal.

As a consequence, the spectrum is also indexed by the lattice L
and thus inherits its partial order. This implies a notion of (partially
ordered) low and high frequencies: low frequencies are the columns
of F−1 indexed by small lattice elements and high frequencies are
the columns indexed by large ones. Fig. 1d shows the spectrum ŝ of
the signal s in Fig. 1b.

The special case of powerset lattices was considered in [13]. An
analogous version of DLSP can be derived for join-semilattices.

Relation to graph signal processing. DLSP can be viewed as
an SP framework for the special class of directed graphs associated
with lattices. However, there are several generating shifts (meet-
irreducible elements) and not one (e.g., the adjacency matrix [4]),
and thus filters, viewed as polynomials, are multivariate. Further,
lattice theory guarantees a Fourier transform that diagonalizes all
shifts and filters. The adjacency matrix of lattice graphs cannot be
diagonalized as it is strictly triangular (up to an ordering of the ver-
tices). Intuitively, DLSP captures the partial-order structure and not
the adjacency structure.

3. SAMPLING

We now propose a novel sampling theorem for lattice signals that al-
lows perfect reconstruction of k-sparse lattice signals using k sam-
ples. A lattice signal s is k-sparse if its Fourier support satisfies
|supp(̂s)| = |{b ∈ L : ŝb 6= 0}| = k.
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Fig. 2: (a) Sampling and (b) interpolation of the Fourier-sparse lat-
tice signal shown in Fig. 1. Vectors and matrix columns are indexed
by the elements of the lattice in Fig. 1a, sorted alphabetically.

In the following, we consider a k-sparse s with supp(̂s) =
{b1, . . . , bk} = B. Following the paradigm of classical sampling
theory [9], we are looking for a linear sampling operator PA that
reduces the signal s to k samples (|A| = k) such that there exists a
linear interpolation operator IA that allows for perfect recovery of s
from these samples.

Sampling. Formally, for A ⊆ L with |A| = |supp(̂s)| = k,
|L| = n, we consider linear sampling operators of the form

PA : Rn → Rk : s 7→ sA = (sa1 , . . . , sak ). (4)

Interpolation. The corresponding linear interpolation operator

IA : Rk → Rn : sA 7→ s (5)

exists if the sub-matrix F−1
A,B , obtained by selecting the rowsA ⊆ L

and columns B ⊆ L from F−1, is invertible.
In other words, finding a pair of sampling and interpolation op-

erator for a Fourier-sparse signal with supp(̂s) = B boils down to
selecting elements A = {a1, . . . , ak} ⊆ L such that the linear sys-
tem of equations

sa =
∑
b∈B

ŝbfba for a ∈ A, (6)

where fb denotes the b-th pure frequency (= the b-th column of F−1),
admits a unique solution. Theorem 1 yields a sample selection crite-
rion and the respective interpolation operator.

Theorem 1. (Lattice sampling) Let s be a lattice signal on L with
supp(̂s) = {b1, . . . , bk} = B. Then s can be reconstructed from the
samples sB = PBs. Namely, s = IBsB with IB = F−1

L,B(F−1
B,B)−1.

The matrix F−1
L,B is the sub-matrix of F−1 obtained by selecting the

rows L and columns B.

Proof. Because of the Fourier-sparsity of s, we have s = F−1
L,B ŝB .

Applying the sampling operator PB to both sides yields sB =
F−1
B,B ŝB . Therefore, proving our claim amounts to showing that
F−1
B,B is of full rank.

When choosing an order of the elements a ∈ L that agrees with
the partial order defined by ≤, the matrix F−1 becomes a lower tri-
angular matrix with F−1

aa = ιa≤a = 1. Consequently, sub-matrices
of the form F−1

B,B have always full rank as desired.

In the previous example (Fig. 1), s is 4-sparse with B =
{a, b, d, f}. Fig. 2 applies Theorem 1 to sample and reconstruct s.

In practice, we might not have access to the entire lattice sig-
nal. Instead, sampling may amount to querying an evaluation oracle
[21], taking measurements [11] or eliciting preferences [12]. Addi-
tionally, real-world signals might not be exactly sparse. However,
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Fig. 3: (a) Genotype-lattice signal and (b) its spectrum.

if they are approximately sparse, Theorem 1 can still be applied to
obtain a sampling-based approximation.

4. EXAMPLE APPLICATIONS

In the following we explore various examples of lattice signals and
investigate whether they admit a sparse representation. In all our sig-
nal and spectrum plots the lattice elements are topologically sorted
as described in Sec. 2.2.

4.1. Genotype Lattice Signals

In genetics and molecular biology, genotype-phenotype mappings
are studied to better understand pathogens (viruses, bacteria, para-
sites, cancer cells) [11, 25], e.g., to derive HIV treatment schemes
that take the resistance of a particular HIV gene to various drugs
into account [32]. A gene is a subsequence of a DNA sequence oc-
curring at a particular position and a genotype is a variant of a gene
caused by mutations at possibly multiple positions of the gene. A
genotype-phenotype mapping associates genotypes with real num-
bers, e.g., indicating their levels of resistance to a certain drug. Ref-
erences [11, 26] utilize advances in statistics and machine learning to
infer such genotype-phenotype mappings from possibly incomplete
or noisy data [33, 34]. The shared underlying assumption of these
approaches is that genotypes form a sublattice of the powerset lattice
of mutations compatible with the possible mutation order. In other
words, genotype-phenotype mappings are lattice signals.

Lattice. Formally, let M = {m1, . . . ,ml} be the set of mu-
tations for one gene. For m1,m2 ∈ M , we write m1 ≤ m2 if
mutation m1 must occur before mutation m2 can occur. A genotype
g ⊆M is defined as a subset of mutations that obeys the constraints
among mutations, i.e., m1 ∈ g implies m2 ∈ g for all m2 ≤ m1.
The set of all valid genotypes is thus a sub-semilattice L of the pow-
erset lattice 2M with ∧ = ∩.

Signal. As signals we consider genotype-phenotype mappings
that associate virus genotypes with their resistances to a certain set
of drugs.

Experiment. We compute the lattice Fourier transforms of the
two reported estimated genotype-phenotype lattice mappings in [11,
Appendix Table 4 & Table 7]. These lattice signals are of length 28
and 36, respectively.

The first maps each HIV RT genotype to its resistance against
the nucleotide RT inhibitor zidovudine. RT genotypes are composed
of up to seven amino acid substitutions in the RT gene. 11 out of
28 Fourier coefficients are zero. The second lattice signal (Fig. 3a)
maps each HIV PR genotype to its resistance against the PR inhibitor
indinavir. PR genotypes are composed of up to six amino acid sub-
stitutions in the PR gene. 12 of the 36 Fourier coefficients are zero
(Fig. 3b). In both cases, the signals could thus be losslessly sampled
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using Theorem 1. Next, we consider two much larger examples of
lattice signals.

4.2. Word Lattice Signals

We consider lattice signals derived from text. There are multiple
ways to define a partial order over words [35] and some of them
allow for the definition of a meet operation. Here we consider the
prefix order as an example.

Lattice. Let Σ be a finite alphabet, Σ∗ the set of finite words
using letters from that alphabet and for a word u = u1u2 · · ·ul ∈
Σ∗ we denote its length by |u| = l. The prefix order is defined as
follows: For u, v ∈ Σ∗ we have u ≤ v iff |u| ≤ |v| and ui ≤ vi for
i ∈ {1, . . . , |u|}. Thus, the greatest lower bound of two words with
respect to ≤ is their longest common prefix: u ∧ v = u1u2 · · ·up

where u1 = v1, . . . , up = vp and up+1 6= vp+1.
Given a document D = (u(1), . . . , u(m)) ∈ (Σ∗)m, we con-

sider the smallest sub-semilattice L of the prefix-semilattice Σ∗ con-
taining the document (i.e., {u(1), . . . , u(m)} ⊆ L).

Signal. As a signal we assign to every a ∈ L how often it occurs
as prefix in the document D. For example, for a = the, we count
every occurrence of the words the, their, then, etc.

Experiment. We construct a signal s from the book "Die Kritik
der reinen Vernunft" by Immanuel Kant from project Gutenberg2.
The book contains 9, 952 unique words, which expands to 12, 636
prefixes after we include all meets to obtain a semilattice. Fig. 4a
shows the spectrum of the signal. It is approximately sparse, mean-
ing that the absolute values of about 90% of the spectral coefficients
are smaller than 0.01. We reconstruct the signal as s′ using the k
largest spectral components |ŝb|‖f(b)‖ (i.e., from the associated sam-
ples given by Theorem 1). Fig. 4b shows the reconstruction error as
a function of k. For example, an error of 10% can be achieved with
less than 2500 samples.

4.3. Combinatorial Auction Valuations

Combinatorial auctions are an electronic market design paradigm
concerned with the auctioning of a set of goods [12] sold in bun-
dles to a set of bidders. The goal is to find an allocation of the goods
to the bidders that maximizes the social welfare. An important ex-
ample are auctions for bands of the electromagnetic spectrum [22].

Lattice. Formally, a bundle b ⊆ M is a subset of a finite set of
goods M = {g1, . . . , gm}. The bundles form a powerset lattice 2M

with ∧ = ∩.
Signal. Each individual bidder is modeled as a valuation func-

tion. A valuation function s : 2M → R≥0 captures the preferences

2https://www.gutenberg.org/ebooks/6343

(a) s (b) ŝ

Fig. 5: (a) Example valuation function and (b) its spectrum.

of a bidder, i.e., it associates each bundle with its bidder-specific
value. Therefore, each bidder defines a lattice signal s.

The social welfare of an allocation ofM to the bidders is the sum
of the respective values, but the value functions are unknown to the
auctioneer. Therefore, the auctioneer tries to estimate the bidders’
valuation functions by querying values for specific bundles, i.e., by
sampling. Thus, Theorem 1 yields a sampling scheme for bidders
with Fourier-sparse s. The challenge is to find the support of the
spectrum.

Experiment. For the auction design, it is unfeasible to obtain
complete valuation functions for real world bidders, thus, it is com-
mon practice to make use of simulated bidders. In our experiment,
we used the Global Synergy Value Model (GSVM) [36] to generate
valuation functions for seven bidders s(1), . . . , s(7) in a world with
18 goods M = {g1, . . . , g18} using the spectrum auction test suite
[22]. In the default GSVM setup there are one national and six re-
gional bidders. The goods are arranged equidistantly on two circles,
twelve on the national circle and the remaining six on the regional
one. National bidders are interested in all goods on the national cir-
cle and regional bidders in four goods on the national circle and two
on the regional one. The strengths of the synergy effects depend on
the angular distances on the circles.

The spectrum of all s(i) is very sparse with the largest values at
ŝ(i)B for the 172 subsets B ⊆ M with |B| ≤ 2, i.e., the functions
are band-limited. An example is shown in Fig. 5. In Fig. 5b the
first 172 spectral coefficients amount to the barely visible peak at
zero. The subsets are ordered by cardinality. Thus, using the first
172 samples we can approximately reconstruct the 7 functions. The
relative reconstruction error is ‖s(i)− s′(i)‖/‖s(i)‖ = 4.31 · 10−6±
1.75 · 10−6.

As a consequence, under the assumption that a bidder is GSVM,
an auctioneer could sample all goods and pairs of goods to obtain a
reasonable estimate of the entire valuation function.

5. CONCLUSIONS

We expanded the recently introduced discrete-lattice signal process-
ing to investigate sampling and include a sampling theorem. Since
the lattice Fourier transform is triangular (if the lattice is topolog-
ically sorted), it takes a somewhat simple form in that, for perfect
reconstruction, the sampling locations are equal to the sparsity sup-
port in the Fourier domain. As prototypical examples we considered
three very different classes of lattice signals and showed that all were
sparse or approximately sparse in the Fourier domain, thus allowing
for practical sampling. The results show that DLSP provides mean-
ingful new tools, different from graph SP, to process a relevant class
of real-world signals.
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[9] M. Vetterli, J. Kovačević, and V. K. Goyal, Foundations of
signal processing, Cambridge University Press, 2014.

[10] S. Chen, R. Varma, A. Sandryhaila, et al., “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal
Processing, vol. 63, no. 24, pp. 6510–6523, 2015.

[11] N. Beerenwinkel, P. Knupfer, and A. Tresch, “Learning mono-
tonic genotype-phenotype maps,” Statistical applications in
genetics and molecular biology, vol. 10, no. 1, 2011.

[12] S. De Vries and R. V. Vohra, “Combinatorial auctions: A sur-
vey,” INFORMS Journal on computing, vol. 15, no. 3, pp.
284–309, 2003.

[13] M. Püschel, “A discrete signal processing framework for set
functions,” in Proc. International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). IEEE, 2018, pp.
4359–4363.

[14] S. Sardellitti, S. Barbarossa, and P. Di Lorenzo, “On the graph
Fourier transform for directed graphs,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 11, no. 6, pp. 796–811,
2017.

[15] J. R. Munkres, Elements of algebraic topology, CRC Press,
2018.

[16] A. Patania, G. Petri, and F. Vaccarino, “The shape of collabo-
rations,” EPJ Data Science, vol. 6, no. 1, pp. 18, 2017.

[17] E. Estrada and G. J. Ross, “Centralities in simplicial com-
plexes. applications to protein interaction networks,” Journal
of theoretical biology, vol. 438, pp. 46–60, 2018.

[18] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hyper-
graphs: Clustering, classification, and embedding,” in Ad-
vances in neural information processing systems, 2007, pp.
1601–1608.

[19] A. R. Benson, R. Abebe, M. T. Schaub, et al., “Simpli-
cial closure and higher-order link prediction,” Proc. National
Academy of Sciences, vol. 115, no. 48, pp. E11221–E11230,
2018.

[20] G. Brero, B. Lubin, and S. Seuken, “Machine learning-
powered iterative combinatorial auctions,” 2018.

[21] P. Stobbe and A. Krause, “Learning Fourier sparse set func-
tions,” in Proc. International Conference on Arti
cial Intelligence and Statistics (AISTATS), 2012, pp. 1125–
1133.

[22] M. Weiss, B. Lubin, and S. Seuken, “SATS: A universal
spectrum auction test suite,” in Proc. Conference on Au-
tonomous Agents and MultiAgent Systems. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2017,
number 16, pp. 51–59.

[23] A. Krause and D. Golovin, “Submodular function maximiza-
tion,” 2014.

[24] R. Socher, A. Perelygin, J. Wu, et al., “Recursive deep models
for semantic compositionality over a sentiment treebank,” in
Proc. Conference on empirical methods in natural language
processing, 2013, pp. 1631–1642.

[25] P. Alberch, “From genes to phenotype: dynamical systems and
evolvability,” Genetica, vol. 84, no. 1, pp. 5–11, 1991.

[26] S. Gopalakrishnan, H. Montazeri, S. Menz, et al., “Estimat-
ing HIV-1 fitness characteristics from cross-sectional genotype
data,” PLoS computational biology, vol. 10, no. 11, 2014.

[27] B. Ganter and R. Wille, Formal concept analysis: mathemati-
cal foundations, Springer Science & Business Media, 2012.

[28] G. Markowsky, “Permutation lattices revised,” Mathematical
Social Sciences, vol. 27, no. 1, pp. 59–72, 1994.

[29] E. R. Canfield, “Meet and join within the lattice of set parti-
tions,” The electronic journal of combinatorics, vol. 8, no. 1,
pp. 15, 2001.

[30] G.-C. Rota, “On the foundations of combinatorial theory I.
theory of Möbius functions,” Probability theory and related
fields, vol. 2, no. 4, pp. 340–368, 1964.

[31] F. Lange and M. Grabisch, “The interaction transform for func-
tions on lattices,” Discrete Mathematics, vol. 309, no. 12, pp.
4037–4048, 2009.

[32] D. E. Bennett, R. J. Camacho, D. Otelea, et al., “Drug re-
sistance mutations for surveillance of transmitted HIV-1 drug-
resistance: 2009 update,” PloS one, vol. 4, no. 3, pp. e4724,
2009.

[33] S.-Y. Rhee, M. J. Gonzales, R. Kantor, et al., “Human immun-
odeficiency virus reverse transcriptase and protease sequence
database,” Nucleic acids research, vol. 31, no. 1, pp. 298–303,
2003.

[34] R. W. Shafer, “Rationale and uses of a public HIV drug-
resistance database,” The Journal of infectious diseases, vol.
194, no. Supplement_1, pp. S51–S58, 2006.

[35] J.-C. Birget, “Partial orders on words, minimal elements of
regular languages, and state complexity,” Theoretical Com-
puter Science, vol. 119, no. 2, pp. 267–291, 1993.

[36] J. K. Goeree and C. A. Holt, “Hierarchical package bidding: A
paper & pencil combinatorial auction,” Games and Economic
Behavior, vol. 70, no. 1, pp. 146–169, 2010.


