
# Learning DAGs from Data with Few Root Causes Panagiotis Misiakos, Chris Wendler and Markus Püschel

# Goal: DAG Learning

Given: Data  $\mathbf{X} = {\mathbf{x}_i}_{1 \le i \le d}$ associated with the nodes of an unknown weighted DAG

**Goal:** Learn the weighted DAG  $\mathbf{A} = \{a_{ij}\}_{1 \leq i < j \leq d}$ 




Active research area! [Vowels et. al., 2021], NOTEARS [Zheng et. al., 2018], GOLEM [Ng. et. al., 2020], GraN-DAG [Lachapelle et. al., 2019], [Chevalley et. al., 2023]

### **Novel assumptions: Few root causes**

1. Data  $\mathbf{X}$  generated from **few events** upstream 2.  $\mathbf{X}$  subject to **measurement noise** 

## River network example



Few cities pollute C Negligible pollution by others  $N_c$  Measurement noise  $N_x$ 

Accumulated pollution X

**Metaphor** for data generated by few events

# Data generation model

### Linear SEM (structural equation model) [Shimizu et. al., 2006]

Data are linear combination of the parent's values (causes)



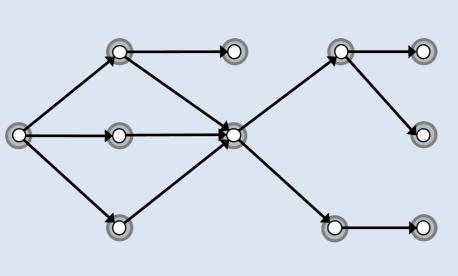
 $= \mathbf{N} \left( \mathbf{I} + \overline{\mathbf{A}} \right)$  Transitive closure

|Input = root causes

**Linear SEM** = Linear transformation with input N

Output

# Our contribution


## New data generation assumptions

## **Prior work**

Data generation model

 $\mathbf{X} = \mathbf{N} \left( \mathbf{I} + \overline{\mathbf{A}} \right)$ Linear SEM

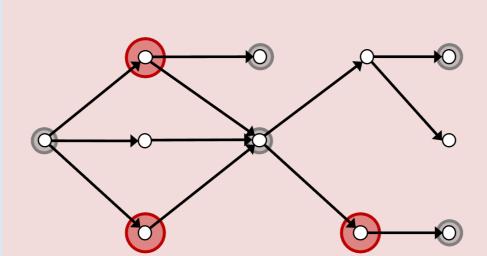
### Input (root causes)



Input: N Random and i.i.d.

N: low magnitude noise

### Weighted DAG


No weight constraint in  ${f A}$ A is sparse

Data/Measurements X Assumed to be exact

### **Ours: Few root causes**

## $\mathbf{X} = (\mathbf{C} + \mathbf{N}_c) (\mathbf{I} + \overline{\mathbf{A}}) + \mathbf{N}_x$

Linear SEM with **few root causes** and measurement noise



Input:  $\mathbf{C} + \mathbf{N}_c$ Approximately sparse C is sparse with varying support  $N_c$ : low magnitude noise

A has weights in [0, 1]A is sparse

Subject to **measurement** noise  $\mathbf{N}_x$ 

# Learning the DAG

## **Theoretical Guarantees**

**Lemma:** Given  $\mathbf{N}_x = \mathbf{0}$  the DAG is **identifiable** from data with few root causes. Proof is based on identifiability from Linear non-Gaussian SEM [Shimizu et. al.,

2006].

**Theorem:** Given  $\mathbf{N}_c = \mathbf{N}_x = \mathbf{0}$  and enough data the true DAG  $\mathbf{A}$ is (with high probability) the **minimizer** of:

 $\min_{\mathbf{A} \in \mathbb{R}^{d \times d}} \left\| \mathbf{X} \left( \mathbf{I} + \overline{\mathbf{A}} \right)^{-1} \right\|_{0} \quad \text{s.t. } \mathbf{A} \text{ is acyclic}$ 

Proof in our paper.

## Learning the DAG by continuous relaxation

In practice  $\mathbf{N}_c \neq \mathbf{0}, \ \mathbf{N}_x \neq \mathbf{0}$  and we apply the  $L^1$  norm.

 $\min_{\mathbf{A}\in\mathbb{R}^{d\times d}} \left\| \mathbf{X} \left( \mathbf{I} + \overline{\mathbf{A}} \right)^{-1} \right\|_{1} + \lambda \|\mathbf{A}\|_{1} \quad \text{s.t. tr} \left( e^{\mathbf{A}\odot\mathbf{A}} \right) = d$ 

Acyclicity constraint NOTEARS [Zheng et. al., 2018]

| SHD | 600- |   |
|-----|------|---|
|     | 500- |   |
|     | 400- |   |
|     | 300- |   |
| • • | 200- |   |
|     | 100- |   |
|     | 0-   | - |
|     |      | 2 |

| Excellent reconstruction when assumptions are functions are function when assumptions are functions |                                               |                 | Reconstruction quality (SHD) |               |      | 10           | Runtime [seconds] |   |              |       |               |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------|------------------------------|---------------|------|--------------|-------------------|---|--------------|-------|---------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hyperparameter                                | Default         | Change                       | SparseRC (o   | urs) | GOLEM        | NOTEARS           |   | SparseRC (o  | ours) | GOLEM         | NOTEARS        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default settings                              |                 | (                            | $0.6\pm0.8$   |      | $82 \pm 34$  | $59 \pm 22$       | ( | $10 \pm 1.8$ |       | $529\pm210$   | $796 \pm 185$  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Graph type                                    | Erdös-Renyi     | Scale-free                   | $2.2 \pm 1.5$ |      | $34 \pm 9.0$ | $28\pm9.5$        |   | $11\pm1.1$   |       | $460 \pm 184$ | $180\pm7.2$    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{N}_{c}, \mathbf{N}_{x}$ distribution | Gaussian        | Gumbel                       | $1.4 \pm 1.0$ |      | $87\pm44$    | $59 \pm 17$       |   | $8.2\pm0.7$  |       | $349 \pm 125$ | $251\pm48$     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Edges / Vertices                              | 4               | 10                           | $46\pm7.5$    |      | $212\pm70$   | $243\pm26$        |   | $14\pm1.0$   |       | $347 \pm 121$ | $471\pm82$     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Standardization                               | No              | Yes                          | $624 \pm 48$  |      | failure      | failure           |   | $13\pm0.7$   |       | $194\pm9.6$   | $679\pm72$     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Larger weights in $\mathbf{A}$                | (0.1, 0.9)      | (0.5, 2)                     | failure       |      | $96 \pm 25$  | $92\pm14$         |   | $11 \pm 1.9$ |       | $326 \pm 145$ | $781\pm76$     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{N}_c, \mathbf{N}_x$ deviation        | $\sigma = 0.01$ | $\sigma = 0.1$               | $504 \pm 19$  |      | $98\pm14$    | $199 \pm 12$      |   | $8.4\pm0.6$  |       | $431 \pm 177$ | $2834 \pm 228$ |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dense root causes $\mathbf{C}$                | p = 0.1         | p = 0.5                      | $1221\pm33$   |      | $29\pm2.5$   | $126 \pm 32$      |   | $8.7\pm0.7$  |       | $309 \pm 63$  | $433 \pm 53$   |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Samples                                       | n = 1000        | n = 100                      | $2063\pm92$   |      | failure      | failure           |   | $9.1\pm0.7$  |       | $334 \pm 121$ | $427\pm35$     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fixed support                                 | No              | Yes                          | failure       |      | failure      | failure           |   | $15\pm2.0$   |       | $360 \pm 142$ | $669 \pm 386$  |

### **Assumptions deteriorate**

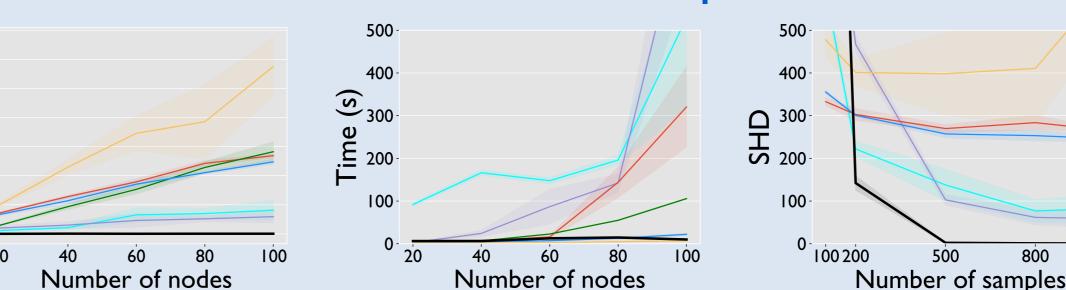
## Scaling to larger DAGs

| Nodes $d$ , |
|-------------|
| d = 200,    |
| d = 500,    |
| d = 1000    |
| d = 2000    |
| d = 3000    |
|             |

|       | I.00 <sup>-</sup> |
|-------|-------------------|
| C TPR | 0.95-             |
|       | 0.90-             |
|       | 0.85 -            |
|       | 0.80 -            |
|       | 0.75              |
|       |                   |

Few root causes

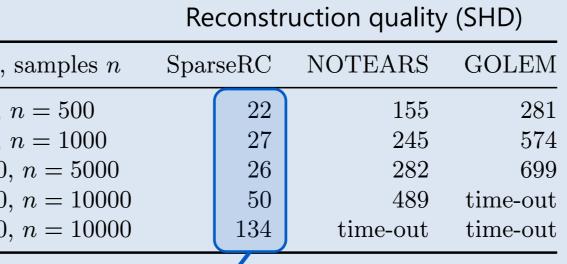
Sparse DAG


# Experiments

## Default experiment: few root causes assumption fullfiled by construction

• C is multivariate Bernoulli with p = 0.1 and weights from  $\mathcal{U}(0, 1)$ Both root causes  $\mathbf{N}_c$  and measurement noise  $\mathbf{N}_x$  have low std.  $\sigma=0.01$ 

Evaluation metrics: **SHD** (structural Hamming distance), **runtime** 


### **SparseRC is best for all nodes for more than 500 samples**





5-8: deteriorate the sparsity in root causes 9: Low number of samples

10: violates varying support



**Excellent reconstruction** 

### Real Data [Sachs et. al., 2005]

15

11

**Competitive performance** 

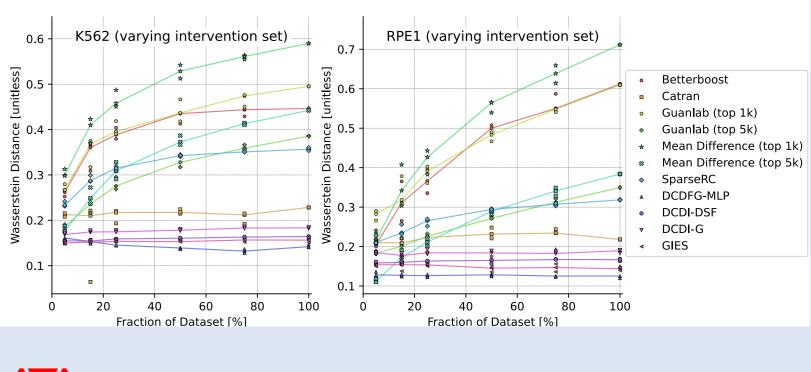
SparseRC

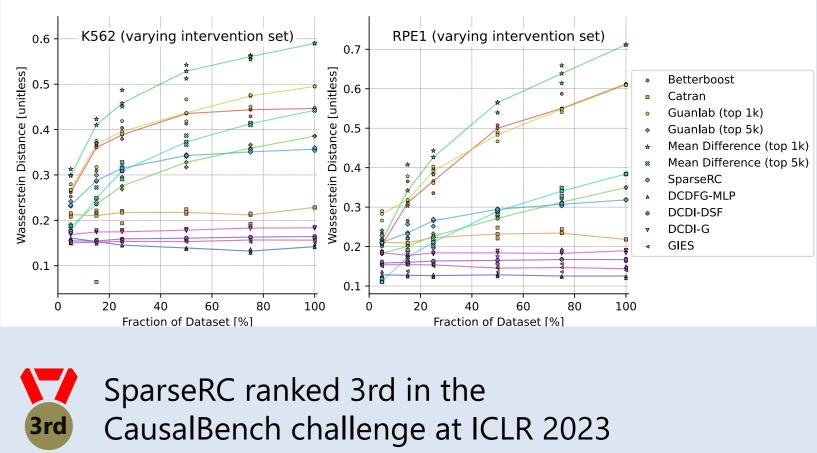
GOLEM

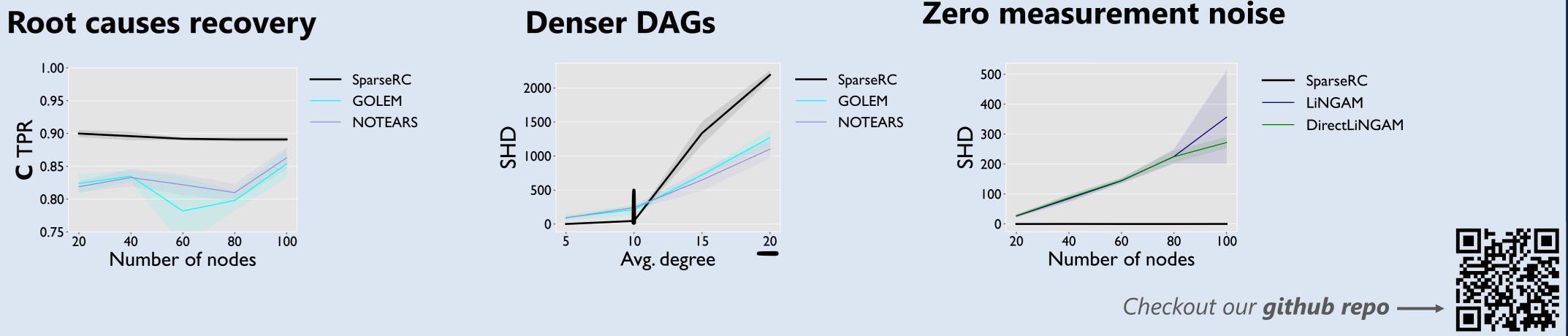
NOTEARS

on real data

 $SHD \downarrow SID \downarrow Total edges$ 

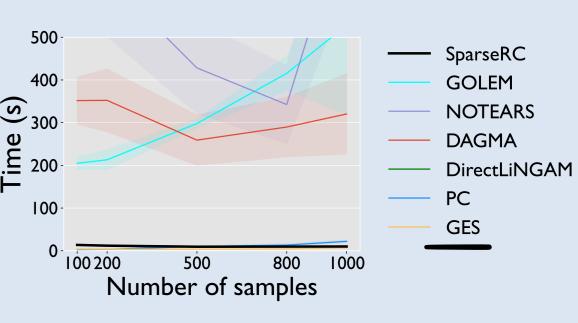

45


44


 $\mathbf{43}$ 

16










# Computer Science **E***Hzürich*

• Random Erdös-Renyi graph (or other) transfomed into DAG • Average degree = 4 and weights from  $[-0.9, -0.1] \cup [0.1, 0.9]$ 



### Also benchmarked but not competitive

DAGMA DirectLiNGAM GES Lingam CAM DAG-NoCurl fGES sortnregress MMHC

### CausalBench Challenge [Chevalley et. al., 2023]