Neural Network Approximation based on Hausdorff distance of Tropical Zonotopes

Panagiotis Misiakos, Georgios Smyrnis, Georgios Retsinas, Petros Maragos

National Technical University of Athens School of Electrical and Computer Engineering

International Conference on Learning Representations (ICLR) 2022

Contributions

- ✓ **Novel** bound on neural network approximation.
- \checkmark 2 new algorithms for neural network compression.

Tropical Algebra

✓ Tropical Semiring $\mathbb{R}_{max} = \mathbb{R} \cup \{-\infty\}$

 $a \lor b = \max(a, b)$ a + b = a + b

- Replaces classical operations of addition and multiplication with max and +, respectively.

Tropical Geometry

Tropical Algebra

✓ Tropical Semiring $\mathbb{R}_{max} = \mathbb{R} \cup \{-\infty\}$

 $a \lor b = \max(a, b)$ a + b = a + b

- Replaces classical operations of addition and multiplication with max and +, respectively.
- ✓ Tropical Polynomials

$$f(\boldsymbol{x}) = \max_{i \in [n]} \{\boldsymbol{a}_i^T \boldsymbol{x} + b_i\}$$

Expressive for ReLU networks.

Tropical Geometry

Tropical Algebra

✓ Tropical Semiring
$$\mathbb{R}_{max} = \mathbb{R} \cup \{-\infty\}$$

 $a \lor b = \max(a, b)$ a + b = a + b

- Replaces classical operations of addition and multiplication with max and +, respectively.
- ✓ Tropical Polynomials

$$f(\boldsymbol{x}) = \max_{i \in [n]} \{\boldsymbol{a}_i^T \boldsymbol{x} + b_i\}$$

Expressive for ReLU networks.

Tropical Geometry

✓ Newton Polytopes

Newt $(f) = \operatorname{conv} \{ \mathbf{a}_i : i \in [n] \}$ ENewt $(f) = \operatorname{conv} \{ (\mathbf{a}_i, b_i) : i \in [n] \}$

- They provide geometric interpretation for tropical polynomials.

Linear Regions and the Newton Polytope

✓ 1 − 1 mapping: between linear regions and vertices. [1] ✓ The upper envelope determines the tropical polynomial and vice versa $f, g \in \mathbb{R}_{\max}[x]$: $f = g \Leftrightarrow UF(\mathsf{ENewt}(f)) = UF(\mathsf{ENewt}(g))$

[1] Charisopoulos, V., Maragos, P. A tropical approach to neural networks with piecewise linear activations. arXiv preprint arXiv:1805.08749, 2018

Question: Would ENewt $(f) \approx \text{ENewt}(g)$ imply $f \approx g$?

Question: Would ENewt $(f) \approx \text{ENewt}(g)$ imply $f \approx g$?

Proposition

Let $p, \tilde{p} \in \mathbb{R}_{max}[\mathbf{x}]$ be two tropical polynomials and let $P = ENewt(p), \tilde{P} = ENewt(\tilde{p})$. Then, $\max_{\mathbf{x} \in \mathcal{B}} |p(\mathbf{x}) - \tilde{p}(\mathbf{x})| \le \rho \cdot \mathcal{H}\left(P, \tilde{P}\right)$ where $\mathcal{B} = \{\mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}|| \le r\}$ is the hypersphere of radius r, and $\rho = \sqrt{r^2 + 1}$.

ReLU neural network with 1 hidden layer

[2] L. Zhang, G. Naitzat, L.-H. Lim. "Tropical Geometry of Deep Neural Networks." in International Conference on Machine Learning, pages 5824–5832. 2018.
 [3] P. Maragos, V. Charisopoulos and E. Theodosis, "Tropical Geometry and Machine Learning," in Proceedings of the IEEE, vol. 109, no. 5, pp. 728-755, May 2021, doi: 10.1109/JPROC.2021.3065238.

NTUA ECE

ICLR 2022

6/14

ReLU neural network with 1 hidden layer

 \checkmark *i*-th hidden layer node.

$$f_i(\boldsymbol{x}) = \max\left(\boldsymbol{a}_i^T \boldsymbol{x} + b_i, 0\right)$$

[2] L. Zhang, G. Naitzat, L.-H. Lim. "Tropical Geometry of Deep Neural Networks." in International Conference on Machine Learning, pages 5824–5832. 2018.
 [3] P. Maragos, V. Charisopoulos and E. Theodosis, "Tropical Geometry and Machine Learning," in Proceedings of the IEEE, vol. 109, no. 5, pp. 728-755, May 2021, doi: 10.1109/JPROC.2021.3056238.

NTUA ECE

ReLU neural network with 1 hidden layer

 \checkmark *i*-th hidden layer node.

$$f_i(\boldsymbol{x}) = \max\left(\boldsymbol{a}_i^T \boldsymbol{x} + b_i, 0\right)$$

 \checkmark *j*-th output node.

$$v_j(\mathbf{x}) = p_j(\mathbf{x}) - q_j(\mathbf{x})$$

[2] L. Zhang, G. Naitzat, L.-H. Lim. "Tropical Geometry of Deep Neural Networks." in International Conference on Machine Learning, pages 5824–5832. 2018.
 [3] P. Maragos, V. Charisopoulos and E. Theodosis, "Tropical Geometry and Machine Learning," in Proceedings of the IEEE, vol. 109, no. 5, pp. 728-755, May 2021, doi: 10.1109/JPROC.2021.3056238.

NTUA ECE

ReLU neural network with 1 hidden layer

 \checkmark *i*-th hidden layer node.

$$f_i(\boldsymbol{x}) = \max\left(\boldsymbol{a}_i^T \boldsymbol{x} + \boldsymbol{b}_i, \boldsymbol{0}\right)$$

 \checkmark *j*-th output node.

$$v_j(\mathbf{x}) = p_j(\mathbf{x}) - q_j(\mathbf{x})$$

Tropical Geometry

- ✓ ENewt (f_i) is linear segment with endpoints **0** and (a_i^T, b_i) .
- ✓ $P_j = \text{ENewt}(p_j), Q_j = \text{ENewt}(q_j)$ are Minkowski sums of segments ⇔ zonotopes [2,3]. ✓ (a_i^T, b_i) are called generators.

[2] L. Zhang, G. Naitzat, L.-H. Lim. "Tropical Geometry of Deep Neural Networks." in International Conference on Machine Learning, pages 5824–5832. 2018.
 [3] P. Maragos, V. Charisopoulos and E. Theodosis, "Tropical Geometry and Machine Learning," in Proceedings of the IEEE, vol. 109, no. 5, pp. 728-755, May 2021, doi: 10.1109/JPROC.2021.3065238.

Theorem

Let $v, \tilde{v} \in \mathbb{R}_{max}[x]$ be two neural networks with 1 hidden layer and \tilde{P}_j, \tilde{Q}_j denote the positive and negative zonotopes of \tilde{v} . The following bound applies.

$$\max_{oldsymbol{x} \in \mathcal{B}} \|oldsymbol{v}(oldsymbol{x}) - ilde{oldsymbol{v}}(oldsymbol{x})\|_1 \leq
ho \cdot \left(\sum_{j=1}^m \mathcal{H}\left(P_j, ilde{P}_j
ight) + \mathcal{H}\left(Q_j, ilde{Q}_j
ight)
ight)$$

- ✓ Geometrical approximation problem.
- ✓ **Goal:** approximate the zonotopes.

(a) Original network

 \checkmark Applies only to networks with one output neuron.

 \checkmark Applies only to networks with one output neuron.

Zonotope K-means

1. Split zonotope generators into positive and negative.

✓ Applies only to networks with one output neuron.

Zonotope K-means

- 1. Split zonotope generators into positive and negative.
- 2. Apply K-means to each generating set.

✓ Applies only to networks with one output neuron.

Zonotope K-means

- 1. Split zonotope generators into positive and negative.
- 2. Apply K-means to each generating set.
- 3. Construct final network.

NTUA ECE

Neural Path K-means

Neural Path K-means

1. For each node form the vector of weights of incident edges.

Neural Path K-means

1. For each node form the vector of weights of incident edges.

2. Execute K-means to these vectors.

Neural Path K-means

1. For each node form the vector of weights of incident edges.

- 2. Execute K-means to these vectors.
- 3. Construct reduced network.

Zonotope K-means Bound

$$\frac{1}{\rho} \cdot \max_{\boldsymbol{x} \in \mathcal{B}} \left| \boldsymbol{v}(\boldsymbol{x}) - \tilde{\boldsymbol{v}}(\boldsymbol{x}) \right| \leq \mathcal{K} \cdot \delta_{\max} + \left(1 - \frac{1}{N_{\max}}\right) \sum_{i=1}^{n} |\boldsymbol{c}_i| \| \left(\boldsymbol{a}_i^{\mathsf{T}}, \ \boldsymbol{b}_i\right) \|$$

Neural Path K-means Bound

$$\begin{split} \frac{1}{\rho} \cdot \max_{\mathbf{x} \in \mathcal{B}} \| \mathbf{v}(\mathbf{x}) - \tilde{\mathbf{v}}(\mathbf{x}) \|_1 &\leq \sqrt{m} \mathcal{K} \delta_{\max}^2 + \sqrt{m} \left(1 - \frac{1}{N_{\max}} \right) \sum_{i=1}^n \| \mathcal{C}_{:,i} \| \left\| \left(\mathbf{a}_i^T, \ b_i \right) \right\| + \\ \frac{\sqrt{m} \delta_{\max}}{N_{\min}} \sum_{i=1}^n \left(\left\| \left(\mathbf{a}_i^T, \ b_i \right) \right\| + \| \mathcal{C}_{:,i} \| \right) + \sum_{j=1}^m \sum_{i \in \mathcal{N}_j} |\mathbf{c}_{ji}| \left\| \left(\mathbf{a}_i^T, \ b_i \right) \right\| \end{split}$$

 \checkmark Bounds represent distances of zonotope vertices from K-means centers.

✓ Approximation is better when $K \approx n$. Both bounds become 0 when K = n.

✓ Binary classification tasks.

Percentage of Remaining Neurons	MNIST 3/5			MNIST 4/9		
	Smyrnis et al., 2020	Zonotope K-means	Neural Path K-means	Smyrnis et al., 2020	Zonotope K-means	Neural Path K-means
100% (Original) 1% 0.3%	$\begin{array}{c} 99.18 \ \pm \ 0.27 \\ 99.11 \ \pm \ 0.36 \\ 99.18 \ \pm \ 0.36 \end{array}$	$\begin{array}{r} 99.38 \ \pm \ 0.09 \\ 99.39 \ \pm \ 0.05 \\ 99.25 \ \pm \ 0.37 \end{array}$	$\begin{array}{c} 99.38 \ \pm \ 0.09 \\ 99.32 \ \pm \ 0.03 \\ 99.19 \ \pm \ 0.41 \end{array}$	$\begin{array}{r} 99.53 \ \pm 0.09 \\ 99.01 \ \pm 0.09 \\ 98.81 \ \pm 0.09 \end{array}$	$\begin{array}{c} 99.53 \ \pm \ 0.09 \\ 99.46 \ \pm \ 0.05 \\ 98.22 \ \pm \ 1.38 \end{array}$	$\begin{array}{c} 99.53 \pm 0.09 \\ 99.35 \pm 0.17 \\ 98.22 \pm 1.33 \end{array}$

✓ Multiclass classification tasks.

Percentage of	MNIST		Fashion-MNIST	
Remaining Neurons	Smyrnis and Maragos, 2020	Neural Path K-means	Smyrnis and Maragos, 2020	Neural Path K-means
100% (Original) 10% 5%	$\begin{array}{r} 98.60 \pm 0.03 \\ 93.48 \pm 2.57 \\ 92.93 \pm 2.59 \end{array}$	$\begin{array}{r} 98.61 \pm 0.11 \\ 96.89 \pm 0.55 \\ 96.31 \pm 1.29 \end{array}$	$\begin{array}{c} 88.66 \ \pm \ 0.54 \\ 80.43 \ \pm \ 3.27 \\ - \end{array}$	$\begin{array}{c} 89.52 \ \pm \ 0.19 \\ 86.04 \ \pm \ 0.94 \\ 83.68 \ \pm \ 1.06 \end{array}$

Experimental Evaluation II: Comparison with Thinet and baselines.

(b) LeNet5, F-MNIST

 \checkmark 1 hidden layer with 84 neurons.

Custom deep network

✓ 3 hidden layers.

NTUA ECE

0.0

Experimental Evaluation III: Larger datasets

(a) CIFAR-VGG, CIFAR10

(b) CIFAR-VGG, CIFAR100

AlexNet \checkmark 2 hidden layers of size 512.

 \checkmark 1 hidden layer of size

CIFAR-VGG

512.

0.0

0.0

			-
	ΠU	1 .	<u> </u>
18		2/1	<u> </u>

ICLR 2022

0.5 04 0.3 0.2 0.1

Thank you!

Neural Network Approximation based on Hausdorff distance of Tropical Zonotopes

Panagiotis Misiakos, Georgios Smyrnis, Georgios Retsinas, Petros Maragos